Advertisement

Regulatory Circuits of Light-Responsive Genes

  • Maria Cuozzo
  • Steve A. Kay
  • Nam-Hai Chua
Part of the Plant Gene Research book series (GENE)

Abstract

Light is utilized by plants not only as an energy source to drive photosynthesis, but also as a trigger for a series of developmental events, from seed germination to flowering. Light also acts as a modulator of gene activity in response to changing light conditions, such as quantity, quality, duration and direction of the light source. This chapter will present a brief description of light-regulated processes in plants. We will then review recent findings on the proteins and DNA sequences involved in light responses. Finally, we will speculate on mechanisms of signal transduction, if only to point out areas which require more intensive investigation. For a comprehensive review of light regulation of gene expression in higher plants, the reader is referred to Tobin and Silverthorne (1985), as well as to more general recent reviews (Thompson et al, 1985; Ellis, 1986; Kuhlemeier et al, 1987b).

Keywords

Regulatory Circuit rbcS Gene Phytochrome Action Protochlorophyllide Reductase Photo Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Yamamoto, K. T., Nagatani, A., Furuya, M., 1985: Characterization of green tissue-specific phytochrome isolated immunochemically from pea seedlings. Plant Cell Physiol. 26, 1387–1399.Google Scholar
  2. Altman, J., 1985: New visions in photoreception. Nature 313, 264–265.CrossRefGoogle Scholar
  3. Apel, K., 1981: The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH protochlorophyllide oxido-reductase. Eur. J. Biochem. 120, 89–93.PubMedCrossRefGoogle Scholar
  4. Apel, K., Kloppstech, K., 1978: The plastid membranes of barley (Hordeum vulgare): Light-induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur. J. Biochem. 85, 581–588.PubMedCrossRefGoogle Scholar
  5. Becker, P. B., Gloss, B., Schmid, W., Strahle, U., Schutz, G., 1986: In vivo protein-DNA interactions in a glucocorticoid response element required the presence of the hormone. Nature 324, 686–688.PubMedCrossRefGoogle Scholar
  6. Bedbrook, J. R., Smith, S. M., Ellis, R. J., 1980: Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1, 5-bisphosphate carboxylase. Nature 287, 692–697.CrossRefGoogle Scholar
  7. Bell, R. M., 1986: Protein kinase C activation by diacylglycerol second messengers. Cell 45, 631–632.PubMedCrossRefGoogle Scholar
  8. Bennett, J., 1981: Biosynthesis of the light-harvesting chlorophyll a/b protein; polypeptide turnover in darkness. Eur. J. Biochem. 118, 61–70.PubMedCrossRefGoogle Scholar
  9. Berridge, M. J., Irvine, R. F., 1984: Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.PubMedCrossRefGoogle Scholar
  10. Berry, J. A., Lorimer, G. H., Pierce, J., Seemann, J. R., Meek, J., Freas, S., 1987: Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulose-bisphosphate carboxylase activity. Proc. Natl. Acad. Sci. U. S. A. 84, 734–738.PubMedCrossRefGoogle Scholar
  11. Berry, J. O., Nikolau, B. J., Carr, J. P., Klessig, D. F., 1985: Transcriptional and post-transcriptional regulation of ribulose-1, 5-bisphosphate carboxylase gene expression in light-and dark-grown amaranth cotyledons. Mol. Cell. Biol. 5, 2238–2246.PubMedGoogle Scholar
  12. Berry-Lowe, S. L., Meagher, R. B., 1985: Transcriptional regulation of a gene encoding the small subunit of ribulose-1, 5-bisphosphate carboxylase in soybean tissue is linked to phytochrome response. Mol. Cell. Biol. 5, 1910–1917.PubMedGoogle Scholar
  13. Bevan, M., 1984: Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res. 12, 8711–8721.CrossRefGoogle Scholar
  14. Bevan, M. W., Chilton, M.-D., 1982: T-DNA of the agrobacterium Ti-and Ri-plasmids. Ann. Rev. Genetics 16, 357–384.CrossRefGoogle Scholar
  15. Brand, A. H., Breeden, L., Abraham, J., Sternglaz, R., Nasmyth, K., 1985: Characterization of a “silencer” in yeast: a DNA sequence with properties opposite those of a transcriptional enhancer. Cell 41, 41–48.PubMedCrossRefGoogle Scholar
  16. Briggs, W. R., Iino, M., 1983: Blue light absorbing photoreceptors in plants. Phil. Trans. R. Soc. London, Ser. B 303, 347–359.CrossRefGoogle Scholar
  17. Broglie, R., Coruzzi, G., Fraley, R. T., Rogers, S. G., Horsch, R. B., Niedermeyer, J. G., Fink, C. L., Flick, J. S., Chua, N.-H., 1984: Light-regulated expression of a pea ribulose-1, 5-bisphosphate carboxylase small subunit gene in transformed plant cells. Science 224, 838–843.PubMedCrossRefGoogle Scholar
  18. Brown, E. G., Newton, R. P., 1981: Cyclic AMP and higher plants. Phytochemistry 20, 2453–2463.CrossRefGoogle Scholar
  19. Castelfranco, P.A., Beale, S. J., 1983: Chlorophyll biosynthesis: Recent advances and areas of current interest. Ann. Rev. Plant Physiol. 34, 241–278.CrossRefGoogle Scholar
  20. Colbert, J. T., Hershey, H. P., Quail, P. H., 1983: Autoregulatory control of translatable phytochrome mRNA levels. Proc. Natl. Acad. Sci. U.S.A. 80, 2248–2252.PubMedCrossRefGoogle Scholar
  21. Colbert, J. T., Hershey, H. P., Quail, P. H., 1985: Phytochrome regulation of phytochrome mRNA abundance. Plant Mol. Biol. 5, 91–101.CrossRefGoogle Scholar
  22. Cordonnier, M.-M., Pratt, L. H., 1982a: Immunopurification and initial characterization of dicotyledonous phytochrome. Plant Physiol. 69, 360–365.PubMedCrossRefGoogle Scholar
  23. Cordonnier, M.-M., Pratt, L. H., 1982 b: Comparative phytochrome immunochem-istry as assayed by antisera against both monocot and dicot phytochrome. Plant Physiol. 70, 912–916.PubMedCrossRefGoogle Scholar
  24. Cordonnier, M.-M., Greppin, M., Pratt, L. H., 1984: Characterization by enzyme linked immunosorbent assay of monoclonal antibodies to Pisum and Avena phytochrome. Plant Physiol. 74, 123–127.PubMedCrossRefGoogle Scholar
  25. Cordonnier, M.-M., Greppin, H., Pratt, L. H., 1985: Monoclonal antibodies with differing affinities to the red-absorbing and farred absorbing forms of phytochrome. Biochemistry 24, 3246–3252.CrossRefGoogle Scholar
  26. Cordonnier, M.-M., Greppin, H., Pratt, L. H., 1986: Identification of a highly conserved domain on phytochrome from angiosperms to algae. Plant Physiol. 80, 982–987.PubMedCrossRefGoogle Scholar
  27. Coruzzi, G., Broglie, R., Cashmore, A. R., Chua, N.-H., 1983: Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1, 5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid polypeptide. J. Biol. Chem. 258, 1399–1402.PubMedGoogle Scholar
  28. Coruzzi, G., Broglie, R., Edwards, C., Chua, N.-H., 1984: Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1, 5-bisphosphate carboxylase. EMBO J. 3, 1671–1679.PubMedGoogle Scholar
  29. Daniels, S. M., Quail, P. H., 1984: Monoclonal antibodies to three separate domains on 124 kilodalton phytochrome from Avena. Plant Physiol. 76, 622–626.PubMedCrossRefGoogle Scholar
  30. Datta, N., Chen, Y.-R., Roux, S. J., 1985: Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem. Biophys. Res. Comm. 128, 1403–1408.PubMedCrossRefGoogle Scholar
  31. De Vries, S. C., Springer, J., Wessels, J. G. H., 1982: Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156, 129–135.CrossRefGoogle Scholar
  32. Dobres, M.S., Elliot, R. C., Watson, J. C., Thompson, W. F., 1987: A phytochrome regulated pea transcript encodes ferredoxin I. Plant Mol. Biol. 8, 53–59.CrossRefGoogle Scholar
  33. Duke, S. H., Friedrich, J. W., Schrader, L. E., Koukkari, W. L., 1978: Oscillations in the activities of enzymes of nitrate reduction and ammonia assimilation in Glycine max and Zea mays. Physiol. Plant. 42, 269–276.CrossRefGoogle Scholar
  34. Ellis, R. J., 1986: Photoregulation of plant gene expression. Bioscience Reports 6, 127–136.PubMedCrossRefGoogle Scholar
  35. Ephrussi, A., Church, G. M., Tonegawa, S., Gilbert, W., 1985: B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo, Science 227, 134–140.PubMedCrossRefGoogle Scholar
  36. Faciotti, D., O’Neal, J. K., Lee, S., Shewmaker, C. K., 1985: Light-inducible expression of a chimeric gene in soybean tissue transformed with Agrobacterium. Biotechnology 3, 241–246.CrossRefGoogle Scholar
  37. Flockhart, D. A., Corbin, J. D., 1982: Regulatory mechanisms in the control of protein kinases. Crit. Rev. Biochem. 12, 133–186.CrossRefGoogle Scholar
  38. Fluhr, R., Chua, N.-H., 1986: Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia: phytochrome responses and blue light induction. Proc. Natl. Acad. Sci. U. S. A. 83, 2358–2362.PubMedCrossRefGoogle Scholar
  39. Fluhr, R., Kuhlemeier, C., Nagy, F., Chua, N.-H., 1986 a: Organ-specific and light induced expression of plant genes. Science 232, 1106–1112.PubMedCrossRefGoogle Scholar
  40. Fluhr, R., Moses, P., Morelli, G., Coruzzi, G., Chua, N.-H., 1986 b: Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J. 5, 2063–2071.PubMedGoogle Scholar
  41. Gallagher, T. F., Ellis, R. J., 1982: Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J. 1, 1493–1498.PubMedGoogle Scholar
  42. Gallagher, T. F., Jenkins, G. I., Ellis, R. J., 1985: Rapid modulation of transcription of nuclear genes encoding chloroplast proteins by light. FEBS Lett. 186, 241–245.CrossRefGoogle Scholar
  43. Gollmer, I., Apel, K., 1983: The phytochrome controlled accumulation of mRNA sequences encoding the light harvesting chlorophyll a/b-protein of barley (Hordeum vulgare L.). Eur. J. Biochem. 133, 309–313.PubMedCrossRefGoogle Scholar
  44. Goodbourn, S., Burstein, H., Maniatis, T., 1986: The human beta-interferon gene enhancer is under negative control. Cell 45, 601–610.PubMedCrossRefGoogle Scholar
  45. Green, P. J., Kay, S. A., Chua, N.-H., 1987: Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3 A gene. EMBO J. 6, 2543–2549.PubMedGoogle Scholar
  46. Griffiths, W. T., Kay, S. A., Oliver, R. P., 1985: The presence and photoregulation of protochlorophyllide reductase in green tissues. Plant Mol. Biol. 4, 13–22.CrossRefGoogle Scholar
  47. Gutteridge, S., Parry, M. A. J., Burton, S., Keys, A. J., Mudd, A., Feeney, F., Servaites, J. C., Pierce, J., 1986: A nocturnal inhibitor of carboxylation in leaves. Nature 324, 274–276.CrossRefGoogle Scholar
  48. Hale, C. C. H., Roux, S. J., 1980: Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol. 65, 658–662.PubMedCrossRefGoogle Scholar
  49. Harpster, M., Apel, K., 1985: The light-dependent regulation of gene expression during plastid development in higher plants. Physiol. Plant 64, 147–152.CrossRefGoogle Scholar
  50. Hendrickson, W., 1985: Protein-DNA interactions studied by the gel electro-phoresis-DNA binding assay. Biotechniques 3, 198–207.Google Scholar
  51. Herrera-Estrella, L., Van den Broeck, G., Maenhaut, R., Van Montagu, M., Schell, J., Timko, M., Cashmore, A., 1984: Light-inducible and chloroplast-associated expression of a chimeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature 310, 115–120.PubMedCrossRefGoogle Scholar
  52. Hershey, H. P., Colbert, J. T., Lissemore, J. L., Barker, R. F., Quail, P. H., 1984: Molecular cloning of cDNA for Avena phytochrome. Proc. Natl. Acad. Sci. U.S.A. 81, 2332–2336.PubMedCrossRefGoogle Scholar
  53. Hershey, H. P., Barker, R. F., Idler, K. B., Lissemore, J. L., Quail, P. H., 1985: Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nuc. Acids Res. 13, 8543–8559.CrossRefGoogle Scholar
  54. Horsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, P. R., Lloyd, A., Hoffmann, N., 1984: Inheritance of functional foreign genes in plants. Science 223, 496–498.PubMedCrossRefGoogle Scholar
  55. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., Fraley, R. T., 1985: A simple and general method for transferring genes into plants. Science 227, 1229–1231.CrossRefGoogle Scholar
  56. Houslay, M. D., 1987: Egg activation unscrambles a potential role for IP4. Trends in Biochem. Sci. 12, 1–2.CrossRefGoogle Scholar
  57. Hunt, R. E., Pratt, L. H., 1980: Partial characterization of undegraded oat phytochrome. Biochemistry 19, 390–394.PubMedCrossRefGoogle Scholar
  58. Inamine, G., Nash, B., Weissbach, H., Brot, N., 1985: Light regulation of the synthesis of the large subunit of ribulose-1, 5-bisphosphate carboxylase in peas: evidence for translation control. Proc. Natl. Acad. Sci. U. S.A. 82, 5690–5694.PubMedCrossRefGoogle Scholar
  59. Jackson, F. R., Bargiello, T. A., Yun, S.-H., Young, M. W., 1986: Product of per locus of Drosophila shares homology with proteoglycans. Nature 320, 185–188.PubMedCrossRefGoogle Scholar
  60. Jones, A.M., Quail, P. H., 1986: Quaternary structure of 124-kilodalton phytochrome from Avena sativa L. Biochemistry 25, 2987–2995.CrossRefGoogle Scholar
  61. Jones, A. M., Vierstra, R. D., Daniels, S. M., Quail, P., 1985: The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta 164, 501–506.CrossRefGoogle Scholar
  62. Kaufman, L. S., Thompson, W. F., Briggs, W. R., 1984: Different red light requirements for phytochrome-induced accumulation of Cab RNA and rbcS RNA. Science 226, 1447–1449.PubMedCrossRefGoogle Scholar
  63. Kaufman, L. S., Roberts, L. L., Briggs, W. R., Thompson, W. F., 1986: Phytochrome control of specific mRNA levels in developing pea buds. Plant Physiol. 81, 1033–1038.PubMedCrossRefGoogle Scholar
  64. Kaulen, H., Schell, J., Kreuzaler, F., 1986: Light-induced expression of the chimeric chalcone synthase — NPTII gene in tobacco cells. EMBO J. 5, 1–8.PubMedGoogle Scholar
  65. Keith, B., Chua, N.-H., 1986: Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J. 5, 2419–2426.PubMedGoogle Scholar
  66. Klee, H. J., Yanofsky, M. F., Nester, E. W., 1985: Vectors for transformation of higher plants. Biotechnology 3, 637–642.CrossRefGoogle Scholar
  67. Kloppstech, K., 1985: Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear mRNAs. Planta 165, 502–506.CrossRefGoogle Scholar
  68. Knight, T. J., Weissman, G. S., 1982: Rhythms in glutamine synthetase activity energy charge and glutamine in sunflower roots. Plant Physiol. 70, 1683–1688.PubMedCrossRefGoogle Scholar
  69. Koorneef, M., Rolff, E., Spruit, C. J. P., 1980: Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100, 147–160.Google Scholar
  70. Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D. N., Hahlbrock, K., 1983: UV induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc. Natl. Acad. Sci. U.S.A. 80, 2591–2598.PubMedCrossRefGoogle Scholar
  71. Kuhlemeier, C., Fluhr, R., Green, P. J., Chua, N.-H., 1987 a: Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements. Genes and Develop. 1, 247–255.CrossRefGoogle Scholar
  72. Kuhlemeier, C., Green P. J., Chua, N.-H., 1987 b: Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. 38, 221–257.CrossRefGoogle Scholar
  73. Kuhn, D. N., Chappel, J., Boudet, A., Hahlbrock, K., 1984: Induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc. Natl. Acad. Sci. U. S. A. 81, 1102–1106.PubMedCrossRefGoogle Scholar
  74. Lagarias, C., 1985: Progress in the molecular analysis of phytochrome. Photochem. Photobiol. 42, 811–820.CrossRefGoogle Scholar
  75. Lagarias, C., Mercurio, F. M., 1985: Structure function studies on phytochrome. Identification of light induced conformational changes in 124 kDa Avena phytochrome in vitro. J. Biol. Chem. 260, 2415–2423.PubMedGoogle Scholar
  76. Laimins, L., Holmgren-Konig, M., Khoury, G., 1986: Transcriptional “silencer” element in rat repetitive sequences associated with the rat insulin 1 gene locus. Proc. Natl. Acad. Sci. U. S. A. 83, 3151–3155.PubMedCrossRefGoogle Scholar
  77. Lamb, C. J., Lawton, M. A., 1983: Photocontrol of gene expression. In: Encyclopedia of Plant Physiology: Photomorphogenesis (NS 16 A). Shropshire, W., Mohr, H. (eds.), pp. 213–257. Berlin: Springer-Verlag.Google Scholar
  78. Lamppa, G., Morelli, G., Chua, N.-H., 1985 a: Structure and developmental regulation of a wheat gene encoding the major chlorophyl a/b-binding polypeptide. Mol. Cell. Biol. 5, 1370–1378.PubMedGoogle Scholar
  79. Lamppa, G., Nagy, F., Chua, N.-H., 1985 b: Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature 316, 750–752.PubMedCrossRefGoogle Scholar
  80. Lillo, C., 1984: Diurnal variations of nitrate reductase, glutamine synthetase, glutamate synthetase, alanine aminotransferase and aspartate aminotransferase in barley leaves. Physiol. Plant. 61, 214–218.CrossRefGoogle Scholar
  81. Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S., Wilson, D. B., 1986: The metabolism of phosphoinostitide-derived messenger molecules. Science 234, 1519–1526.PubMedCrossRefGoogle Scholar
  82. Mansfield, T. A., Snaith, P. J., 1984: Circadian rhythms. In: Advanced Plant Physiology. Wilkins, M. B. (ed.), pp. 201–218. Pitman, London.Google Scholar
  83. Marme, D., 1977: Phytochrome: membranes as possible sites of primary action. Annual Rev. Plant Physiol. 28, 173–198.CrossRefGoogle Scholar
  84. Martin, E. S., Meidner, H., 1971: Endogenous stomatal rhythm in Tradesiantia virginiana. New Phytol. 71, 1045–1054.CrossRefGoogle Scholar
  85. McCurdy, D.W., Pratt, L. H., 1986: Kinetics of intracellular redistribution of phytochrome in Avena coleoptiles after its photoconversion to the active, far red absorbing form. Planta 167, 330–336.CrossRefGoogle Scholar
  86. Morelli, G., Nagy, F., Fraley, R. T., Rogers, S. G., Chua, N.-H., 1985: A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1, 5-bisphosphate carboxylase small subunit of pea. Nature 315, 200–204.CrossRefGoogle Scholar
  87. Mosinger, E., Batschauer, A., Schafer, E., Apel, K., 1985: Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare). Eur. J. Biochem. 147, 137–142.PubMedCrossRefGoogle Scholar
  88. Nagy, F., Morelli, G., Fraley, R. T., Rogers, S. G., Chua, N.-H., 1985: Photoregulated expression of a pea rbcS gene in leaves of transgenic petunia plants. EMBO J. 4, 3063–3068.PubMedGoogle Scholar
  89. Nagy, F., Kay, S.A., Boutry, M., Hsu, M.-Y., Chua, N.-H., 1986: Phytochrome controlled expression of a wheat Cab gene in transgenic tobacco seedlings. EMBO J. 5, 1119–1124.PubMedGoogle Scholar
  90. Nagy, F., Boutry, M., Hsu, M.-Y., Wong, M., Chua, N.-H., 1987: 5′ proximal region of the wheat Cab-1 gene contains a 268 bp enhancer-like sequence for phytochrome response. EMBO J. 9, 2537–2542.Google Scholar
  91. Nagy, F., Kay, S. A., Chua, N.-H., 1988 (in press): The circadian expression of the wheat Cab-1 gene is regulated at the transcription level in transgenic tobacco. Genes and Develop.Google Scholar
  92. Nathans, J., Thomas, D., Hogness, D. S., 1986 a: Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 232, 193–202.PubMedCrossRefGoogle Scholar
  93. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., Hogness, D. S., 1986 b: Molecular genetics of inherited variation in human color vision. Science 232, 203–210.PubMedCrossRefGoogle Scholar
  94. Nelson, T., Harpster, M. H., Mayfield, S. P., Taylor, W. C., 1984: Light-regulated gene expression during maize leaf development. J. Cell Biol. 98, 558–564.PubMedCrossRefGoogle Scholar
  95. Nester, E. W., Gordon, M. P., Amasino, R. M., Yanofsky, M. F., 1984: Crown gall: a molecular and physiological analysis. Ann. Rev. Plant Physiol. 35, 387–413.CrossRefGoogle Scholar
  96. Nir, U., Walker, M. C., Rutter, W. J., 1986: Regulation of rat insulin 1 gene expression: evidence for negative regulation in nonpancreatic cells. Proc. Natl. Acad. Sci. U.S.A. 83, 3180–3184.PubMedCrossRefGoogle Scholar
  97. Nishizuka, Y., 1986: Studies and perspectives of protein kinase C. Science 233, 305–312.PubMedCrossRefGoogle Scholar
  98. Oelmuller, R., Mohr, H., 1985: Mode of coaction between blue/UV light and light absorbed by phytochrome in light-mediated anthocyanin formation in the milo seedling. Proc. Natl. Acad. Sci. U.S.A. 82, 6124–6128.PubMedCrossRefGoogle Scholar
  99. Olah, Z., Kiss, Z., 1986: Occurrence of lipid and phorbol ester activated protein kinase in wheat cells. FEBS Lett. 195, 33–37.CrossRefGoogle Scholar
  100. Otto, V., Schafer, E., Nagatani, A., Yamamoto, K. T., Furuya, M., 1984: Phytochrome control of its own synthesis in Pisum sativum. Plant Cell Physiol. 25, 1579–1584.Google Scholar
  101. Pratt, L. H., 1982: Phytochrome: the protein moiety. Annual Rev. Plant Physiol. 33, 557–582.CrossRefGoogle Scholar
  102. Reddy, P., Jacquier, A.C., Abovich, N., Petersen, G., Rosbash, M., 1986: The period clock locus of D. melanogaster codes for a proteoglycan. Cell 46, 53–61.PubMedCrossRefGoogle Scholar
  103. Roux, S. J., 1984: Ca2+ and phytochrome action in plants. Bioscience 34, 25–29.PubMedCrossRefGoogle Scholar
  104. Roux, S. J., Datta, N., Chen, Y.-R., Kim, S.-H., 1986: Light, calcium and calmodulin regulation of enzyme activities in isolated nuclei. J. Cell Biochem. Supplement 10 B, 14.Google Scholar
  105. Satter, R. L., Galston, A. W., 1981: Mechanisms of control of leaf movements. Ann. Rev. Plant Physiol. 32, 83–110.CrossRefGoogle Scholar
  106. Schafer, E., Briggs, W. R., 1986: Photomorphogenesis from signal perception to gene expression. Photobiochem. Photobiophys. 12, 305–320.Google Scholar
  107. Schafer, A., Bygrave, F., Matzenauer, S., Marme, D., 1985: Identification of a calcium-and phospholipid-dependent protein kinase in plant tissue. FEBS Lett. 187, 25–28.CrossRefGoogle Scholar
  108. Schopfer, P., 1977: Phytochrome control of enzymes. Annual Rev. Plant Physiol. 28, 223–252.CrossRefGoogle Scholar
  109. Sen, R., Baltimore, D., 1986: Inducibility of K immunoglobulin enhancer-binding protein NF-KB by a posttranslational mechanism. Cell 47, 921–928.PubMedCrossRefGoogle Scholar
  110. Sengar, H., 1982: The effect of blue light on plants and microorganisms. Photochem. Photobiol. 35, 911–920.CrossRefGoogle Scholar
  111. Serlin, B. S., Sopory, S. K., Roux, S. J., 1984: Modulation of oat mitochondrial ATPase activity by Ca2+ and phytochrome. Plant Physiol. 74, 827–833.PubMedCrossRefGoogle Scholar
  112. Shanklin, J., Jabben, M., Vierstra, R. D., 1987: Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc. Natl. Acad. Sci. U.S.A. 84, 359–363.PubMedCrossRefGoogle Scholar
  113. Sharma, R., 1985: Phytochrome regulation of enzyme activity in higher plants. Photochem. Photobiol. 41, 747–755.CrossRefGoogle Scholar
  114. Sharrock, R. A., Lissemore, J. L., Quail, P. H., 1986: Nucleotide and amino acid sequence of a Cucurbita phytochrome cDNA clone: identification of conserved features by comparison with Avena phytochrome. Gene 47, 287–295.PubMedCrossRefGoogle Scholar
  115. Shimazaki, Y., Pratt, L. H., 1985: Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoots. Planta 164, 333–344.CrossRefGoogle Scholar
  116. Shimazaki, Y., Pratt, L. H., 1986: Immunoprecipitation of phytochrome from green Avena by rabbit antisera to phytochrome from etiolated Avena. Planta 168, 512–515.CrossRefGoogle Scholar
  117. Shimazaki, Y., Cordonnier, M.-M., Pratt, L. H., 1986: Identification with monoclonal antibodies of a second antigenic domain on Avena phytochrome that changes upon its photoconversion. Plant Physiol. 82, 109–113.PubMedCrossRefGoogle Scholar
  118. Sibley, D. R., Benovic, J. L., Caron, M. G., Lefkowitz, R. J., 1987: Regulation of transmembrane signaling by receptor phosphorylation. Cell 48, 913–922.PubMedCrossRefGoogle Scholar
  119. Sieciehowicz, K., Ireland, R. J., Joy, K. W., 1985: Diurnal variation of asparaginase in developing pea leaves. Plant Physiol. 77, 506–508.CrossRefGoogle Scholar
  120. Silverthorne, J., Tobin, E. M., 1984: Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc. Natl. Acad. Sci. U.S.A. 81, 1112–1116.PubMedCrossRefGoogle Scholar
  121. Simpson, J., Timko, M. P., Cashmore, A. R., Schell, J., Van Montagu, M., Herrera-Estrella, L., 1985: Light-inducible and tissue specific expression of a chimeric gene under control of the 5′ flanking sequence of a pea chlorophyll a/b binding protein gene. EMBO J. 4, 2723–2729.PubMedGoogle Scholar
  122. Simpson, J., Schell, J., Van Montagu, M., Herrera-Estrella, L., 1986 a: The light-inducible and tissue specific expression of a pea LHCP gene involves an upstream element combining enhancer and silencer-like properties. Nature 323, 551–553.CrossRefGoogle Scholar
  123. Simpson, J., Van Montagu, M., Herrera-Estrella, L., 1986 b: Photosynthesis associated gene families: differences in response to tissue-specific and environmental factors. Science 233, 34–38.PubMedCrossRefGoogle Scholar
  124. Slovin, J. P., Tobin, E. M., 1982: Synthesis and turnover of the light-harvesting chlorophyll a/b protein in Lemna gibba grown with intermittent red light: possible translational control. Planta 154, 465–472.CrossRefGoogle Scholar
  125. Smith, H., 1982: Light quality, photoperception, and plant strategy. Annual Rev. Plant Physiol. 33, 481–518.CrossRefGoogle Scholar
  126. Smith, W. O., 1983: Phytochrome as a molecule. In: Encyclopedia of Plant Physiology (NS) 16 A: Photomorphogenesis. Shropshire, W., Mohr, H. (eds.), pp. 96–1118. Springer-Verlag, Berlin.Google Scholar
  127. Smith, S. M., Ellis, R. J., 1978: Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulose-bisphosphate carboxylase. J. Mol. Appl. Genet. 1, 127–137.Google Scholar
  128. Speth, V., Otto, V., Schafer, E., 1986: Intracellular localization of phytochrome in oat coleoptiles by electron microscopy. Planta 168, 299–304.CrossRefGoogle Scholar
  129. Thompson, W. F., Kaufman, L. S., Watson, J. C., 1985: Induction of plant gene expression by light. Bioessays 3, 153–159.CrossRefGoogle Scholar
  130. Timko, M. P., Kausch, A. P., Castresana, C., Fassler, J., Herrera-Estrella, L., Van den Broeck, G., Van Montagu, M., Schell, J., Cashmore, A. R., 1985: Light regulation of plant gene expression by an upstream enhancer-like element. Nature 318, 579–582.PubMedCrossRefGoogle Scholar
  131. Tobin, E. M., 1978: Light regulation of specific mRNA species in Lemna gibba L. G-3. Proc. Natl. Acad. Sci. U.S.A. 75, 4749–4753.PubMedCrossRefGoogle Scholar
  132. Tobin, E. M., Klein, A. O., 1975: Isolation and translation of plant messenger RNA. Plant Physiol. 56, 88–92.PubMedCrossRefGoogle Scholar
  133. Tobin, E. M., Silverthorne, J., 1985: Light regulation of gene expression in higher plants. Ann. Rev. Plant. Physiol. 36, 569–593.CrossRefGoogle Scholar
  134. Tokuhisa, J. G., Daniels, S. M., Quail, P. H., 1985: Phytochrome in green tissue: spectral and immunochemical evidence for distinct molecular species of phytochrome in light grown Avena sativa L. Planta 164, 321–332.CrossRefGoogle Scholar
  135. Tsien, R. Y., 1981: A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527–528.PubMedCrossRefGoogle Scholar
  136. Vierstra, R. D., Quail, P. H., 1982a: Native phytochrome: inhibition of proteolysis yields a homogenous monomer of 124 kilodaltons from Avena. Proc. Natl. Acad. Sci. 79, 5272–5276PubMedCrossRefGoogle Scholar
  137. Vierstra, R. D., Quail, P. H., 1982 b: Proteolysis alters the spectral properties of 124 kdalton phytochrome from Avena. Planta 156, 158–165.CrossRefGoogle Scholar
  138. Vierstra, R. D., Quail, P. H., 1983: Purification and initial characterization of 124 kdalton phytochrome from Avena. Biochemistry 22, 2498–2505.CrossRefGoogle Scholar
  139. Vierstra, R. D., Quail, P. H., 1985: Spectral characterization and proteolytic mapping of native 120-kilodalton phytochrome from Cucurbita pepo L. Plant Physiol. 77, 990–998.PubMedCrossRefGoogle Scholar
  140. Vierstra, R. D., Cordonnier, M.-M., Pratt, L. H., Quail, P. H., 1984: Native phytochrome: immunoblot analysis of relative molecular mass and in vitro proteolytic degradation for several plant species. Planta 160, 521–528.CrossRefGoogle Scholar
  141. Vince-Prue, D., 1983: Photomorphogenesis and flowering. Encyclopedia of Plant Physiology (NS) 16 B: Photomorphogenesis. Shropshire, W., Mohr, H. pp. 457–490. Springer-Verlag, Berlin.Google Scholar
  142. Wagle, J., Jaffe, M. J., 1980: Plant Physiol. Supplement 65, 3.Google Scholar
  143. Wilkins, M. B., 1959: An endogenous rhythm in the rate of CO2 output of Bryo-phyllum. I. Some preliminary experiments. J. Exp. Bot. 10, 377–390.CrossRefGoogle Scholar
  144. Wong, Y.-S., Cheng, H.-C., Walsh, D. A., Lagarias, J. C., 1986: Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes. J. Biol. Chem. 261, 12089–12097.PubMedGoogle Scholar
  145. Yamamoto, K. R., 1985: Steroid receptor regulated transcription of specific genes and gene networks. Ann. Rev. Genet. 19, 209–252.PubMedCrossRefGoogle Scholar
  146. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., Schell, J., 1983: Ti-plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 2143–2150.PubMedGoogle Scholar
  147. Zhu, Y. S., Kung, S. D., Bogorad, L., 1985: Phytochrome control of levels of mRNA complementary to plastid and nuclear genes of maize. Plant Physiol. 79, 371–376.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Maria Cuozzo
    • 1
  • Steve A. Kay
    • 1
  • Nam-Hai Chua
    • 1
  1. 1.Laboratory of Plant Molecular BiologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations