Anther- and Pollen-Expressed Genes

  • Joseph P. Mascarenhas
Part of the Plant Gene Research book series (GENE)


Flowering plants produce intricate, often beautiful structures, within which their reproductive processes take place. These structures are the flowers. In flowering plants, as in more primitive plants, a diploid spore-producing generation (sporophyte) alternates with a haploid, gamete-producing generation (gametophyte). The male and female gametophytes of Angiosperms are reduced to microscopic structures enclosed within the tissues of the sporophyte. The functions of the gametophytes are the production of the sperm and egg cells and their union in fertilization. The pollen grain is the male gametophyte and the embryo sac the female gametophyte. The flower consists of specialized structures, the anthers and the pistil or gynoecium, in which the sex cells are formed.


Pollen Tube Sperm Cell Pollen Development Pollen Germination Mature Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertini, L., Grenet-Auberger, H., Souvre, A., 1981: Polysaccharides and lipids in microsporocytes and tapetum of Rhoeo discolor Hance. Cytochemical study. Acta Soc. Bot. Polon. 50, 21–28.Google Scholar
  2. Albertini, L., Souvre, A., 1978: Les polysaccharides des microsporocytes et du tapis chez le Rhoeo discolor Hance. Étude cytochimique et autoradiographie (glucose-3H). Bull. Soc. Bot. Fr., Actualités botan. 125, 45–50.Google Scholar
  3. Altschuler, M., Mascarenhas, J. P., 1982: The synthesis of heat shock and normal proteins at high temperatures in plants and their possible roles in survival under heat stress. In: Heat Shock From Bacteria to Man. Schlessinger, M. J., Ashburner, M., Tissieres, A. (eds.), Cold Spring Harbor Lab. 291–297.Google Scholar
  4. Angold, R. E., 1968: The formation of the generative cell in the pollen grain of Endymion non-scriptus (L.). J. Cell Sci. 3, 573–578.PubMedGoogle Scholar
  5. Bashe, D. M., 1984: Developmental control of protein and rRNA synthesis in pollen of Tradescantia paludosa and Nicotiana tabacum. M. S. Thesis, State Univ. of New York at Albany.Google Scholar
  6. Bino, R. J., 1985: Histological aspects of microsporogenesis in fertile, cytoplasmic male sterile and restored fertile Petunia hybrida. Theor. Appl. Genet. 69, 425–428.CrossRefGoogle Scholar
  7. Brewbaker, J. L., 1967: The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Amer. J. Bot. 54, 1069–1083.CrossRefGoogle Scholar
  8. Brewbaker, J. L., 1971: Pollen enzymes and isoenzymes. In: Pollen: Development and Physiology. Heslop-Harrison, J. (ed.), London, Butterworths. 156–170.Google Scholar
  9. Bryce, W. H., Nelson, D. E., 1979: Starch-synthesizing enzymes in the endosperm and pollen of maize. Plant Physiol. 63, 312–317.PubMedCrossRefGoogle Scholar
  10. Capkova-Balatkova, V., Hrabetova, E., Tupy, J., 1980: Effects of cycloheximide on pollen of Nicotiana tabacum in culture. Biochem. Physiol. Pflanzen 175, 412–420.Google Scholar
  11. Cooper, P., Ho, T.-H. D., Hauptman, R. M., 1984: Tissue specificity of the heat shock response in maize. Plant Physiol. 75, 431–441.PubMedCrossRefGoogle Scholar
  12. Dickinson, H. G., 1973: The role of plastids in the formation of pollen grain coatings. Cytobios. 8, 25–40.PubMedGoogle Scholar
  13. Dickinson, H. G., 1976: Common factors in exine deposition. In: The Evolutionary Significance of the Exine, pp. 67–90. Ferguson, I. K., Muller, J. (eds.). Linnean Soc. Symp. Ser. 1.Google Scholar
  14. Dickinson, D. B., Hopper, J. E., Davies, M. D., 1973: A study of pollen enzymes involved in sugar nucleotide formation. In: Biogenesis of Plant Cell Wall Polysaccharides. pp. 29–48. Loewus, F. (ed.), New York, Academic Press.Google Scholar
  15. Dickinson, D. B., Hyman, D., Gonzales, J. W., 1977: Isolation of uridine 5′-pyro-phosphate glucuronic acid pyrophosphorylase and its assay using 32-pyrophosphate. Plant Physiol. 59, 1082–1084.PubMedCrossRefGoogle Scholar
  16. Echlin, P., 1971: The role of the tapetum during microsporogenesis of angiosperms. In: Pollen; Development and Physiology. pp. 41–61. Heslop-Harrison, J. (ed.). London, Butterworths.Google Scholar
  17. Eschrich, W., 1961: Untersuchungen über den Ab-und Aufbau der Callose (III. Mitteilung über Callose). Z. Bot. 49, 153–218.Google Scholar
  18. Frankel, R., Izhar, S., Nitsan, J., 1969: Timing of callose activity and cytoplasmic male sterility in Petunia. Biochem. Genet. 3, 451–455.PubMedCrossRefGoogle Scholar
  19. Frankis, R. C., Mascarenhas, J. P., 1980: Messenger RNA in the ungerminated pollen grain: a direct demonstration of its presence. Ann. Bot. 45, 595–599.Google Scholar
  20. Frova, C., Binelli, G., Ottaviano, E., 1987: Isozyme and HSP gene expression during male gametophyte development in maize. In: Isozymes: Current Topics in Biological and Medical Research. Vol. 15, pp. 97–120. Scandalios, J. (ed.), New York, Alan R. Liss.Google Scholar
  21. Goldberg, R. B., 1987: Emerging patterns of plant development. Cell 49, 298–300.CrossRefGoogle Scholar
  22. Hara, A., Kawamoto, K., Funaguma, T., 1980: Inorganic pyrophosphatase from pollen of Typha latifolia. Plant Cell. Physiol. 21, 1475–1482.Google Scholar
  23. Haskell, D. W., Rogers, O. M., 1985: RNA synthesis by vegetative and sperm nuclei of trinucleate pollen. Cytologia 50, 805–809.Google Scholar
  24. Herdt, E., Sutfeld, R., Wiermann, R., 1978: The occurrence of enzymes involved in phenylpropanoid metabolism in the tapetum fraction of anthers. Cytobiologie 17, 433–441.PubMedGoogle Scholar
  25. Heslop-Harrison, J., 1968: Tapetal origin of pollen coat substances in Lilium. New Phytol. 67, 779–786.CrossRefGoogle Scholar
  26. Heslop-Harrison, J., 1971: Sporopollenin in the biological context. In: Sporo-pollenin, pp. 1–31. Brooks, J., Grant, P. R., Muir, M., van Gjizel, P., Shaw, G. (eds.). London, Academic Press.Google Scholar
  27. Horner, H. T., Rogers, M. A., 1974: A comparative light and electron microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile pepper (Capsicum annuum). Canad. J. Bot. 52, 435–441.CrossRefGoogle Scholar
  28. Izhar, S., Frankel, R., 1971: Mechanism of male sterility in Petunia. The relationship between pH, callose activity in the anthers, and the breakdown of microsporogenesis. Theoret. Appl. Genet. 41, 104–108.CrossRefGoogle Scholar
  29. Jackson, J. F., Linskens, H. F., 1980: DNA repair in pollen: Range of mutagens inducing repair, effect of radiation inhibitors and changes in thymidine nucleotide metabolism during repair. Mol. Gen. Genet. 180, 517–522.CrossRefGoogle Scholar
  30. Jackson, J. F., Linskens, H. F., 1982: Phytic acid in Petunia hybrida pollen is hydro-lyzed during germination by a phytase. Acta Bot. Neerl. 31, 441–447.Google Scholar
  31. Kamalay, J. C., Goldberg, R. B., 1980: Regulation of structural gene expression in tobacco. Cell 19, 934–946.CrossRefGoogle Scholar
  32. Knox, R. B., Heslop-Harrison, J., 1969: Cytochemical localization of enzymes in the wall of the pollen grain. Nature 223, 92–94.CrossRefGoogle Scholar
  33. Kroh, M., Loewus, M. W., 1978: Pectolytic enzyme activity from Nicotiana tabacum pollen. Phytochem. 17, 797–799.CrossRefGoogle Scholar
  34. Lin, J.-J., Dickinson, D. B., Ho, T.-H. D., 1987: Phytic acid metabolism in lily (Lilium longiflorum Thunb.) pollen. Plant Physiol. 83, 408–413.PubMedCrossRefGoogle Scholar
  35. Linskens, H. F., Schrauwen, J. A., Konings, R. N. H., 1970: Cell-free protein synthesis with polysomes from germinating Petunia pollen grains. Planta 90, 153–162.CrossRefGoogle Scholar
  36. Malik, C. P., Gupta, S. C., 1976: Changes in peroxidase isoenzymes during germination of pollen. Biochem. Physiol. Pflanzen 169, 519–522.Google Scholar
  37. Malik, C. P., Singh, M. B., 1976: Fluctuations in dehydrogenase activities during development of pollen tube of Calotropis procera. Biochem. Physiol. Pflanzen 169, 583–588.Google Scholar
  38. Mascarenhas, J. P., 1975: The biochemistry of angiosperm pollen development. Bot. Rev. 41, 259–314.CrossRefGoogle Scholar
  39. Mascarenhas, J. P., Altschuler, M., 1983: The response of pollen to high temperatures and its potential applications. In: Pollen: Biology and Implications for Plant Breeding, pp. 3–8. Mulcahy, D. L., Ottaviano, E. (eds.). New York, Elsevier Biomedical.Google Scholar
  40. Mascarenhas, J. P., Bell, E., 1969: Protein synthesis during germination of pollen: studies on polyribosome formation. Biochim. Biophys. Acta 179, 199–203.PubMedGoogle Scholar
  41. Mascarenhas, J. P., Bell, E., 1970: RNA synthesis during development of the male gametophyte of Tradescantia. Develop. Biol. 21, 475–490.PubMedCrossRefGoogle Scholar
  42. Mascarenhas, J. P., Goralnick, R. D., 1971: Synthesis of small molecular weight RNA in the pollen tube of Tradescantia paludosa. Biochim. Biophys. Acta 240, 56–61.PubMedGoogle Scholar
  43. Mascarenhas, J. P., Mermelstein, M., 1981: Messenger RNAs: their utilization and degradation during pollen germination and tube growth. Acta Soc. Bot. Polon. 50, 13–20.Google Scholar
  44. Mascarenhas, J. P., Terenna, B., Mascarenhas, A. F., Rueckert, L., 1974: Protein synthesis during germination and pollen tube growth in Tradescantia. In: Fertilization in Higher Plants. pp. 137–143. Linskens, H. F. (ed.). North Holland.Google Scholar
  45. Mascarenhas, N. T., Bashe, D., Eisenberg, A., Willing, R. P., Xiao, C. M., Mascarenhas, J. P., 1984: Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth. Theor. Appl. Genet. 68, 323–326.CrossRefGoogle Scholar
  46. Matthys-Rochon, E., Vergne, P., Detchepare, S., Dumas, C., 1987: Male germ unit isolation from three tricellular pollen species: Brassica oleracea, Zea mays and Triticum aestivum. Plant Physiol. 83, 464–466PubMedCrossRefGoogle Scholar
  47. McConchie, C. A., Russell, S. D., Dumas, C., Tuohy, M., Knox, R. B., 1987: Quantitative cytology of the sperm cells of Brassica campestris and B. oleracea. Planta 170, 446–452.CrossRefGoogle Scholar
  48. Mepham, R. H., Lane, G. R., 1969: Formation and development of the tapetal peri-plasmodium in Tradescantia bracteata. Protoplasma 68, 446–452.CrossRefGoogle Scholar
  49. Mulcahy, D. L., 1979: The rise of the angiosperms: A genecological factor. Science 206, 20–23.PubMedCrossRefGoogle Scholar
  50. Mulcahy, D. L., Mulcahy, G. B., 1975: The influence of gametophytic competition on sporophytic quality in Dianthus chinensis. Theoret. Appl. Genet. 46, 277–280.Google Scholar
  51. Mulcahy, D. L., Mulcahy, G. B., 1987: The effects of pollen competition. Amer. Sci. 75, 44–50.Google Scholar
  52. Nave, E. B., Sawhney, V. K., 1986: Enzymatic changes in post-meiotic anther development in Petunia hybrida. I. Anther ontogeny and isozyme analyses. J. Plant. Physiol. 125, 451–465.Google Scholar
  53. Ottaviano, E., Sari-Gorla, M., Mulcahy, D. L., 1980: Pollen tube growth rates in Zea mays: Implications for genetic improvement of crops. Science 210, 437–438.PubMedCrossRefGoogle Scholar
  54. Ottaviano, E., Sari-Gorla, M., 1979: Genetic variability of male gametophyte in maize. Pollen genotype and pollen-style interaction. Monographie in Genetica Agraria. 89–106.Google Scholar
  55. Ottaviano, E., Sari-Gorla, M., Arenari, I., 1983: Male gametophytic competitive ability in maize selection and implications with regard to the breeding system. In: Pollen: Biology and Implications for Plant Breeding. pp. 367–373. Mulcahy, D. L., Ottaviano, E. (eds.). New York, Elsevier Biomed.Google Scholar
  56. Peddada, L., Mascarenhas, J. P., 1975: 5S ribosomal RNA synthesis during pollen development. Develop. Growth Diff. 17, 1–8.CrossRefGoogle Scholar
  57. Raghavan, V., 1981: A transient accumulation of poly(A)-containing RNA in the tapetum of Hyoscyamus niger during microsporogenesis. Develop. Biol. 81, 342–348.PubMedCrossRefGoogle Scholar
  58. Rajora, O. P., Zsuffa, L., 1986: Sporophytic and gametophytic gene expression in Populus deltoides Marsh, P. nigra L. and P. maximowiczii Henry. Can. J. Genet. Cytol. 28, 476–482.Google Scholar
  59. Reynolds, T. L., Raghavan, V., 1982: An autoradiographic study of RNA synthesis during maturation and germination of pollen grains of Hyoscyamus niger. Protoplasma 111, 177–188.CrossRefGoogle Scholar
  60. Reznickova, S.A., 1978: Histochemical study of reserve nutrient substances in anther of Lilium candidum. Comp. Rend. Acad. Bulgare Sci. 31, 1067–1070.Google Scholar
  61. Reznickova, S. A., Willemse, M. T. M., 1980: Formation of pollen in the anther of Lilium. II. The function of the surrounding tissues in the formation of pollen and pollen wall. Acta Bot. Neerl. 29, 141–156.Google Scholar
  62. Reznickova, S. A., Willemse, M. T. M., 1981: The function of the tapetal tissue during microsporogenesis in Lilium. Acta Soc. Bot. Polon. 50, 83–87.Google Scholar
  63. Rowley, J. R., 1981: Pollen wall characters with emphysis upon applicability. Nord. J. Bot. 1, 357–380.CrossRefGoogle Scholar
  64. Russell, S. D., 1984: Ultrastructure of the sperm of Plumbago zeylanica. II. Quantitative cytology and three-dimensional organization. Planta 162, 385–391.CrossRefGoogle Scholar
  65. Russell, S. D., 1985: Preferential fertilization in Plumbago: Ultrastructural evidence for gamete-level recognition in an angiosperm. Proc. Natl. Acad. Sci. U.S.A. 82, 6129–6132.PubMedCrossRefGoogle Scholar
  66. Russell, S. D., 1986: Isolation of sperm cells from the pollen of Plumbago zeylanica. Plant Physiol. 81, 317–319.PubMedCrossRefGoogle Scholar
  67. Sacher, R., Mulcahy, D. L., Staples, R., 1983: Developmental selection for salt tolerance during self-pollination of Lycopersicon × Solanum F1 for salt tolerance of F2. In: Pollen: Biology and Implications for Plant Breeding. pp. 329–334. Mulcahy, D. L., Ottaviano, E. (eds.). New York, Elsevier.Google Scholar
  68. Sari-Gorla, M., Frova, C., Binelli, G., Ottaviano, E., 1986: The extent of gameto-phytic-sporophytic gene expression in maize. Theoret. Appl. Genet. 72, 42–47.CrossRefGoogle Scholar
  69. Sauter, J. J., 1969: Autoradiographische Untersuchungen zur RNS-und Proteinsynthese in Pollenmutterzellen, jungen Pollen und Tapetumzellen während der Mikrosporogenese von Paeonia tenuifolia L., Z. Pflanzenphysiol. 61, 1–19.Google Scholar
  70. Sawhney, V. K., Nave, E. B., 1986: Enzymatic changes in post-meiotic anther development in Petunia hybrida. II. Histochemical localization of esterase, peroxidase, malate-and alcohol dehydrogenase. J. Plant Physiol. 125, 467–473.Google Scholar
  71. Schrauwen, J. A. M., Reijnen, W. H., De Leeuw, H. C. G. M., van Herpen, M. M. A., 1986: Response of pollen to heat stress. Acta Bot. Neerl. 35, 321–327.Google Scholar
  72. Scott, J. J., Loewus, F. A., 1986: A calcium-activated phytase from pollen of Lilium longiflorum. Plant Physiol. 82, 333–335.PubMedCrossRefGoogle Scholar
  73. Searcy, K. B., Mulcahy, D. L., 1985 a: Pollen tube competition and selection for metal tolerance in Silene diocia (Caryophyllaceae) and Mimulus gutatus (Scro-phulariaceae). Amer. J. Bot. 72, 1695–1699.CrossRefGoogle Scholar
  74. Searcy, K. B., Mulcahy, D. L., 1985: Pollen selection and the gametophytic expression of metal tolerance in Silene diocia (Caryophyllaceae) and Mimulus guttatus (Scrophulariaceae). Amer. J. Bot. 72, 1700–1706.CrossRefGoogle Scholar
  75. Shaykh, M., Kolattakudy, P. E., Davis, R., 1977: Production of a novel extracellular cutinase by the pollen and the chemical composition and ultrastructure of the stigma cuticle of Nasturtium. Plant Physiol. 60, 907–915.CrossRefGoogle Scholar
  76. Singh, M. B., O’Neill, P. M., Knox, R. B., 1985: Initiation of postmeiotic β-galacto-sidase synthesis during microsporogenesis in oilseed rape. Plant Physiol. 77, 229–231.CrossRefGoogle Scholar
  77. Steffensen, D. M., 1966: Synthesis of ribosomal RNA during growth and division in Lilium. Expt. Cell Res. 44, 1–12.CrossRefGoogle Scholar
  78. Steffensen, D. M., 1971: Ribosome synthesis compared during pollen and pollen tube development. In: Pollen: Development and Physiology, pp. 223–229. Heslop-Harrison, J. (ed.). London, Butterworths.Google Scholar
  79. Stieglitz, H., Stern, H., 1973: Regulation of β-1, 3-glucanase activity in developing anthers of Lilium. Develop. Biol. 34, 169–173.PubMedCrossRefGoogle Scholar
  80. Stinson, J., Mascarenhas, J. P., 1985: Onset of alcohol dehydrogenase synthesis during microsporogenesis in maize. Plant Physiol. 77, 222–224.PubMedCrossRefGoogle Scholar
  81. Stinson, J. R., Eisenberg, A. J., Willing, R. P., Pe, M. E., Hanson, D. D., Mascarenhas, J. P., 1987: Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 83, 442–447.PubMedCrossRefGoogle Scholar
  82. Suss, J., Tupy, J., 1979: Poly(A)RNA synthesis in germinating pollen of Nicotiana tabacum L., Biol. Planta (Praha) 21, 365–371.CrossRefGoogle Scholar
  83. Takats, S. T., Wever, G. H., 1971: DNA polymerase and DNA nuclease activities in S-competent and S-incompetent nuclei from Tradescantia pollen grains. Expt. Cell Res. 69, 25–28.CrossRefGoogle Scholar
  84. Takegami, M. H., Yoshioka, M., Tanaka, I., Ito, M., 1981: Characteristics of isolated microsporocytes from liliaceous plants for studies of the meiotic cell cycle in vitro. Plant Cell Physiol. 22, 1–10.Google Scholar
  85. Tanaka, I., Ito, M., 1980: Induction of typical cell division in isolated microspores of Lilium longiflorum and Tulipa gesneriana. Plant Sci. Lett. 17, 279–285.CrossRefGoogle Scholar
  86. Tanaka, I., Ito, M., 1981: Studies on microspore development in liliaceous plants. II. Pollen tube development in lily pollens cultured from the uninucleate microspore stage. Plant Cell Physiol. 22, 149–153.Google Scholar
  87. Tanksley, S. D., Zamir, D., Rick, C. M., 1981: Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213, 454–455.CrossRefGoogle Scholar
  88. Tano, S., Takahashi, H., 1964: Nucleic acid synthesis in growing pollen tubes. J. Biochem. (Tokyo) 56, 578–580.Google Scholar
  89. Tupy, J., 1977: RNA synthesis and polysome formation in pollen tubes. Biol. Plan-tarum (Praha) 19, 300–309.Google Scholar
  90. Tupy, J., 1982: Alterations in polyadenylated RNA during pollen maturation and germination. Biol. Plantarum (Praha) 24, 331–340.CrossRefGoogle Scholar
  91. Tupy, J., Hrabetova, E., Balatkova, V., 1977: Evidence for ribosomal RNA synthesis in pollen tubes in culture. Biol. Plantarum (Praha) 19, 226–230.CrossRefGoogle Scholar
  92. Vithanage, H. I. M. V., Knox, R. B., 1980: Periodicity of pollen development and quantitative cytochemistry of exine and intine enzymes in the grasses Lolium perenne L. and Phalaris tuberosa L. Ann. Bot. 45, 131–141.Google Scholar
  93. Wever, G. H., Takats, S. T., 1971: Isolation and separation of S-competent and S-incompetent nuclei from Tradescantia pollen grains. Expl. Cell Res. 69, 29–32.CrossRefGoogle Scholar
  94. Whipple, A. P., Mascarenhas, J. P., 1978: Lipid synthesis in germinating Tradescantia pollen. Phytochem. 17, 1273–1274.CrossRefGoogle Scholar
  95. Wiermann, R., 1979: Stage-specific phenylpropanoid metabolism during pollen development. In: Regulation of Secondary Product and Plant Hormone Metabolism, pp. 231–239. Luckner, M., Schreiber, K. (eds.). Oxford, Pergamon Press.Google Scholar
  96. Willing, R. P., Bashe, D., Mascarenhas, J. P., 1988: An analysis of the quantity and diversity of Messenger RNAs from pollen and shoots of Zea mays. Theoret. Appl. Genet. (in press).Google Scholar
  97. Willing, R. P., Mascarenhas, J. P., 1984: Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol. 75, 865–868.PubMedCrossRefGoogle Scholar
  98. Xiao, C. M., Mascarenhas, J. P., 1985: High temperature induced thermotolerance in pollen tubes of Tradescantia and heat shock proteins. Plant Physiol. 78, 887–890.PubMedCrossRefGoogle Scholar
  99. Zamir, D., 1983: Pollen gene expression and selection: applications in plant breeding. In: Isozymes in Plant Genetics and Breeding. pp. 313–330. Tanksley, S. D., Orton, T. J. (eds.). Amsterdam, Elsevier.Google Scholar
  100. Zamir, D., Tanksley, S. D., Jones, R. A., 1982: Haploid selection for low temperature tolerance of tomato pollen. Genetics 101, 129–137PubMedGoogle Scholar
  101. Zamir, D., Vallejos, E. C., 1983: Temperature effects on haploid selection of tomato micropores and pollen grains. In: Pollen: Biology and Implications in Plant Breeding, pp. 335–342. Mulcahy, D. L., Ottaviano, E. (eds.), New York, Elsevier.Google Scholar
  102. Zhang, H., Croes, A. F., Linskens, H. F., 1984: Qualitative changes in protein synthesis in germinating pollen of Lilium longiflorum after a heat shock. Plant Cell Environ. 7, 689–691.Google Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Joseph P. Mascarenhas
    • 1
  1. 1.Department of Biological SciencesState University of New York at AlbanyAlbanyUSA

Personalised recommendations