Molecular Analysis of Genes Determining Spatial Patterns in Antirrhinum majus

  • Enrico S. Coen
  • Jorge Almeida
  • Tim P. Robbins
  • Andrew Hudson
  • Rosemary Carpenter
Part of the Plant Gene Research book series (GENE)


Coloration in plants and animals provides favourable material for the analysis of pattern formation. The ease of observing differences in colour has lead to the documentation of an enormous amount of variation in the pattern and intensity of pigmentation. Genetic analysis of this variation has revealed large allelic series at loci such as white and yellow in Drosophila melanogaster (Judd, 1976; Nash and Yarking, 1974) succinea in the beetle Harmonia axyridis (Tan, 1945), agouti in mammals (Searle, 1968), nivea (niv) and pallida (pal) in Antirrhinum majus (Baur, 1924; Fincham and Harrison, 1967; Carpenter et al, 1987), c1, a1, a2, and R in Zea mays (Coe and Neuffer, 1977) and an1, an2 in Petunia hybrida (Bianchi et al, 1978; Gerats et al, 1983). A major reason for the variability in colour is that it usually does not affect the viability of an organism, although in natural populations coloration may have important consequences on ecological aspects such as the dispersal of pollen in flowering plants (Stanton et al, 1986).


Transposable Element Corolla Tube Inverted Duplication Wild Type Flower Clonal Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baur, E., 1924: Untersuchungen über das Wesen, die Entstehung und Vererbung von Rassenunterschieden bei Antirrhinum majus. Bibliotheca Genetica 4, 1–70.Google Scholar
  2. Bennetzen, J. L., Swanson, J., Taylor, W. C., Freeling, M., 1984: DNA insertion in the first intron of maize Adh1 affects message levels: Cloning of progenitor and mutant Adh1 alleles. Proc. Natl. Acad. Sci. U.S.A. 81, 4125–4128.PubMedCrossRefGoogle Scholar
  3. Bianchi, F., Cornelissen, P. T. J., Gerats, A. G. M., Hogervorst, J. M. N., 1978: Regulation of gene action in Petunia hybrida: unstable alleles of a gene for flower colour. Theor. Appl. Genet. 53, 157–167.CrossRefGoogle Scholar
  4. Bingham, P. M., Zachar, Z., 1985: Evidence that two mutations, w DZL and z 1, affecting synapsis-dependent genetic behaviour of white are transcriptional regulatory mutations. Cell 40, 819–825.PubMedCrossRefGoogle Scholar
  5. Bonas, U., Sommer, H., Harrison, B. J., Saedler, H., 1984a: The transposable element Tam1 of Antirrhinum majus is 17 kb long. Mol. Gen. Genet. 194, 138–143.CrossRefGoogle Scholar
  6. Bonas, U., Sommer, H., Saedler, H., 1984b: The 17 kb Tam1 element of Antirrhinum majus induces a 3 bp duplication upon integration into the chalcone synthase gene. EMBO J. 3, 1015–1019.PubMedGoogle Scholar
  7. Carpenter, R., Coen, E. S., Hudson, A. D., Martin, C. R., 1984: Transposable genetic elements and genetic instability in Antirrhinum. Seventy-third Annual Report of the Johan Innes Institute. (Norwich: Crowe and Sons Ltd.), pp. 52–64.Google Scholar
  8. Carpenter, R., Martin, C., Coen, E. S., 1987: Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus. Mol. Gen. Genet. 207, 82–89.CrossRefGoogle Scholar
  9. Chia, W., Howes, G., Martin, M., Meng, Y., Moses, K., Tsubota, S., 1986: Molecular analysis of the yellow locus of Drosophila. EMBO J. 5, 3597–3605.PubMedGoogle Scholar
  10. Coe, E. H., Neuffer, M. G., 1977: The Genetics of Corn. In: Corn and corn improvement. Sprague, G. F. (ed), American Society of Agronomy, Madison, Wisconsin.Google Scholar
  11. Coen, E. S., Carpenter, R., 1986: Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends in Genet. 2, 292–296.CrossRefGoogle Scholar
  12. Coen, E. S., Carpenter, R., Martin, C., 1986: Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296.PubMedCrossRefGoogle Scholar
  13. Coen, E. S., Carpenter, R., 1988: A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus. EMBO J. 7 in press.Google Scholar
  14. Demerec, M., 1940: Genetic behaviour of euchromatic segments inserted into heterochromatin. Genetics 25, 618–627.PubMedGoogle Scholar
  15. Dooner, H. K., 1983: Coordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Mol. Gen. Genet. 189, 136–141.CrossRefGoogle Scholar
  16. Fincham, J. R. S., Harrison, B., 1967: Instability at the Pal locus in Antirrhinum majus. II. Multiple alleles produced by mutation of one original unstable allele. Heredity 22, 211–227.CrossRefGoogle Scholar
  17. Eissenberg, J. C., Kimbrell, D. A., Fristrom, J. W., Elgin. S. C. R., 1984: Chromatin structure at the 44D larval cuticle gene in Drosophila: the effect of a transposable element insertion. Nucl. Acids Res. 12, 9025–9037.PubMedCrossRefGoogle Scholar
  18. Gerats, A. G. M., Farcy, E., Wallroth, M., Groot, S. R C., Schram, A., 1983: Control of anthocyanin synthesis in Petunia hybrida by multiple allelic series of the genes An1 and An2. Genetics 106, 501–508.Google Scholar
  19. Gierl, A., Schwarz-Sommer, Z., Saedler, H., 1985: Molecular interactions between the components of the En-I transposable element system of Zea mays. EMBO Journal 4, 579–583.PubMedGoogle Scholar
  20. Glandsdorff, N., Charlier, D., Zafarullah, M., 1980: Activation of gene expression by IS2 and IS3. Cold Spring Harbor Symp. Quant. Biol. 45, 153–156.Google Scholar
  21. Harrison, B. J., Carpenter, R., 1973: A comparison of the instabilities at the nivea and pallida loci in Antirrhinum majus. Heredity 31, 309–323.CrossRefGoogle Scholar
  22. Hehl, R., Sommer, H., Saedler, H., 1987: Interaction between the Tam1 and Tam2 transposable elements of Antirrhinum majus. Mol. Gen. Genet. 207, 47–53.CrossRefGoogle Scholar
  23. Hudson, A., Carpenter, R., Coen, E. S., 1987: De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207, 54–59.CrossRefGoogle Scholar
  24. Izant, J. G., Weintraub, H., 1985: Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science 229, 345–352.PubMedCrossRefGoogle Scholar
  25. Jack, J. W., Judd, B. H., 1979: Allelic pairing and gene regulation: A model for the zeste-white interaction in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 76, 1368–1372.PubMedCrossRefGoogle Scholar
  26. Judd, B. H., 1976: Genetic units of Drosophila — complex loci. In: The genetics and biology of Drosophila vol. 1b. Ashburner, M., Novitski, E (eds.) pp. 767–799. London: Academic Press.Google Scholar
  27. Jund, R., Loison, G., 1982: Activation of transcription of a yeast gene in E. coli by an IS5 element. Nature 296, 680–681.PubMedCrossRefGoogle Scholar
  28. Kaulen, H., Schell, J., Kreuzaler, F., 1986: Light induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J. 5, 1–8.PubMedGoogle Scholar
  29. Levis, R., Hazelrigg, T., Rubin, G. M. 1985: Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558–561.PubMedCrossRefGoogle Scholar
  30. Luciw, P. A., Bishop, J. M., Varmus, H. E., Cappechi, M. R., 1983: Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33, 705–716.PubMedCrossRefGoogle Scholar
  31. Lyon, M. F., 1961: Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373.PubMedCrossRefGoogle Scholar
  32. Martin, C. R., Carpenter, R., Coen, E. S., Gerats, A. G. M., 1986: The control of floral pigmentation in A. majus. In: Soc. Expt. Biol. Symp. 32, 19–52. Thomas and Grierson (eds.), Cambridge University Press.Google Scholar
  33. Martin, C. R., Carpenter, R., Sommer, H., Saedler, H., Coen, E. S., 1985: Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging EMBO J. 4, 1625–1630.PubMedGoogle Scholar
  34. Mol, J. N. M., Schram, A. W., de Vlaming, P., Gerats, A. G. M., Kreuzaler, F., Hahlbrock, K., Reif, H. J., Veitkamp, E., 1983: Regulation of flavonoid gene expression in Petunia hybrida: Description and partial characterization of a conditional mutant in chalcone synthase gene expression. Mol. Gen. Genet. 192, 424–429.CrossRefGoogle Scholar
  35. Mount, S. M., 1982: A catalogue of splice-junction sequences. Nucl. Acids Res. 10, 459–472.PubMedCrossRefGoogle Scholar
  36. Nash, W. G., Yarkin, R. G., 1974: Genetic regulation and pattern formation: a study of the yellow locus in Drosophila melanogaster. Genet. Res. Camb. 24, 19–26.CrossRefGoogle Scholar
  37. Roeder, G. S., Rose, A. B., Perlman, R. E., 1985: Transposable element sequences involved in the enhancement of yeast gene expression. Proc. Natl. Acad. Sci. U.S.A. 82, 5428–5432.PubMedCrossRefGoogle Scholar
  38. Saedler, H., Nevers, P., 1985: Transposition in plants: a molecular model. EMBO J. 4, 585–590.PubMedGoogle Scholar
  39. Schwartz-Sommer, Zs., Gierl, A., Berntgen, R., Saedler, H., 1985: Sequence comparison of “states” of a1-m1 suggests a model for Spm (En) action. EMBO J. 4, 2439–2443.Google Scholar
  40. Schneuwly, S., Kuroiwa, A., Gehring, W. J., 1987: Molecular analysis of the dominant homoeotic Antennapedia phenotype. EMBO J. 6, 201–206.PubMedGoogle Scholar
  41. Scott, M. P., Weiner, A. J., Hazelrigg, T. I., Polisky, B. A., Pirotta, V., Scalenghe, F., Kaufman, T. C., 1983: The molecular organisation of the Antennapaedia locus of Drosophila. Cell 35, 763–776.PubMedCrossRefGoogle Scholar
  42. Searle, A. G., 1968: Comparative genetics of coat colour in mammals. London: Academic Press.Google Scholar
  43. Sommer, H., Carpenter, R., Harrison, B. J., Saedler, H., 1985: The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alteration upon excision. Mol. Gen. Genet. 199, 225–231.CrossRefGoogle Scholar
  44. Sommer, H., Bonas, U., Saedler, H., 1988: Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 211, 49–55.PubMedCrossRefGoogle Scholar
  45. Spiribille, R., Forkmann, G., 1982: Genetic control of chalcone synthase activity in flowers of Antirrhinum majus. Phytochemistry 21, 2231–2234.CrossRefGoogle Scholar
  46. Stanton, M. L., Snow, A. A., Handel, S. N., 1986: Floral evolution: attractiveness to pollinators increases male fitness. Science 232, 1625–1627.PubMedCrossRefGoogle Scholar
  47. Stern, C., 1968: Developmental genetics of pattern. In: Genetic mosaics and other essays, pp. 130–173. Harvard Press.Google Scholar
  48. Tan, C. C., 1945: Mosaic dominance in the inheritance of color patterns in the lady-bird beetle, Harmonia axyridis. Genetics 31, 195–210.Google Scholar
  49. Upadhyaya, K. C., Sommer, H., Krebers, E., Saedler, H., 1985: The paramutagenic line niv-44 has a 5kb insert, Tam2, in the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 199, 201–207.CrossRefGoogle Scholar
  50. Zachar, Z., Davidson, D., Garza, D., Bingham, P. M., 1985: A detailed developmental and structural study of the transcriptional effects of insertion of the copia transposon into the white locus of Drosophila melanogaster. Genetics 111, 495–515.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Enrico S. Coen
    • 1
  • Jorge Almeida
    • 1
  • Tim P. Robbins
    • 1
  • Andrew Hudson
    • 1
  • Rosemary Carpenter
    • 1
  1. 1.John Innes InstituteNorwichUK

Personalised recommendations