Genes Involved in the Patterns of Maize Leaf Cell Division

  • Michael Freeling
  • Deverie K. Bongard-Pierce
  • Nicholas Harberd
  • Barbara Lane
  • Sarah Hake
Part of the Plant Gene Research book series (GENE)


Beginning with a mature leaf, it is relatively easy to discover the size, location, and at least some of the specialized molecular and physiological properties of each component cell and tissue. The origin and growth of the leaf clearly preceeds function. Many of the physiological functions of the tissues and cells of a corn leaf are known, but such knowledge has little to do with how these cells came to be located where they are and will not be reviewed here. Classical techniques of fixation, sectioning, and histochemical staining, coupled with more recent methods of in situ cellular RNA and antigen localizations, can describe in detail the end result of development. Detailed anatomical and histological descriptions of the maize leaf are available (Sharman, 1942; Esau, 1943). Figure 1 depicts various parts of a mature maize leaf. The histological section passing transversely through the blade denotes only the anatomical components and cell types necessary to follow this discussion. A typical corn plant generates about 20 near-identical leaves, the leaf being the most visible of the four components that comprise a vegetative, shoot segment (called the “phytomer”; see Galinat, 1959).


Guard Cell Shoot Apex Shoot Apical Meristem Lateral Vein Periclinal Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bird, R. McK., Neuffer, M. G., 1985: Odd new dominant mutations affecting the development of the maize leaf. In: Plant Genetics. Freeling, M. (ed.), pp. 818–821. New York: Alan R. Liss.Google Scholar
  2. Brower, D., 1985: The sequential comparmentalization of Drosophila segments revisited. Cell 41, 361–364.PubMedCrossRefGoogle Scholar
  3. Bryan, A. A., Sass, J. E., 1941: Heritable characters in maize. J. Hered. 32, 343–346.Google Scholar
  4. Coe, E. H., Jr., Neuffer, M. G., 1977: The genetics of corn. In: Corn and Corn Improvement. Sprague, G. F. (ed.), pp. 111–223. Madison: American Society of Agronomy.Google Scholar
  5. Emerson, R. A., Beadle, G. W., Fraser, A. C., 1935: A summary of linkage studies in maize. Cornell Univ. Agric. Exp. Stn. Mem. 180.Google Scholar
  6. Esau, K., 1943: Ontogeny of the vascular bundle in zea mays. Hilgardia 15, 327–368.Google Scholar
  7. Falke, L., Edwards, K. L., Misler, S., Pickard, B., 1986: A mechanotransductive ion channel in patches from cultured tobacco cell plasmalemma. Plant Physiol. Suppl. 80, 9 (Abstr.).Google Scholar
  8. Freeling, M., Hake, S., 1985: Developmental genetics of mutants that specify knotted leaves in maize. Genetics 111, 617–634.PubMedGoogle Scholar
  9. Galatis, B., 1980: Microtubules and guard-cell morphogenesis in Zea mays L. J. Cell Sci. 45, 211–244.PubMedGoogle Scholar
  10. Galinat, W. C., 1959: The phytomer in relation to the floral homologies in the american Maydeae. Harvard University Museum Leaflets 19, 1–32.Google Scholar
  11. Gelinas, D., Postlethwait, S. N., Nelson, O. E., 1969: Characterization of development in maize through the use of mutants. II. The abnormal growth conditioned by the knotted mutant. Am. J. Bot. 56, 671–678.CrossRefGoogle Scholar
  12. Goodwin, B. C., Cohen, M. H., 1969: A phase-shift model for the spatial and temporal organization of developing systems. J. Theoret. Biol. 25, 49–107.CrossRefGoogle Scholar
  13. Gottlieb, L. D., 1984: Genetics and morphological evolution in plants. Am. Nat. 123, 681–709.CrossRefGoogle Scholar
  14. Green, P. B., 1980: Organogenesis — a biophysical view. Ann. Rev. Plant Physiol. 31, 51–82.CrossRefGoogle Scholar
  15. Green, P. B., 1984: Shifts in plant cell axiality: histogenetic influences on cellulose orientation in the succulent, Graptopetalum. Develop. Biol. 103, 18–27.PubMedCrossRefGoogle Scholar
  16. Green, P. B., 1985: Surface of the shoot apex: a reinforcement-field theory for phyl-lotaxis. J. Cell Sci. Suppl. 2, 181–201.PubMedGoogle Scholar
  17. Green, P. B., Brooks, K. E., 1978: Stem formation from a succulent leaf: its bearing on theories of axiation. Am. J. Bot. 65, 13–26.CrossRefGoogle Scholar
  18. Green, P. B., Lang, J. M., 1981: Toward a biophysical theory of organogenesis: birefringence observations on regenerating leaves in the succulent Graptopetalum paraguayense E. Walther. Planta 151, 413–426.CrossRefGoogle Scholar
  19. Guharay, F., Sachs, F., 1984: Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352, 685–701.PubMedGoogle Scholar
  20. Guharay, F., Sachs, F., 1985: Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J. Physiol. 363, 119–134.PubMedGoogle Scholar
  21. Hake, S., 1987: Tissue interactions in plant development. Bioessays 6, 58–60.CrossRefGoogle Scholar
  22. Hake, S., Bird, R. McK., Neuffer, M. G., Freeling, M., 1985: The maize ligule and mutants that affect it. In: Plant Genetics. Freeling, M., pp. 61–72. New York: Alan R. Liss.Google Scholar
  23. Hake, S., Freeling, M., 1986 a: Is the tassel a developmental compartment in the young meristem? Maize Genet. Coop. News Lett. 60, 23–24.Google Scholar
  24. Hake, S., Freeling, M., 1986 b: Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent mesophyll cells. Nature 320, 621–623.CrossRefGoogle Scholar
  25. Harberd, N., Hake, S., Freeling, M., 1987: Programmed periclinal divisions of epidermal cells during glume development. Maize Genet. Coop. News Lett. 61, 23–24.Google Scholar
  26. Hilu, K. W., 1983: The role of single-gene mutations in the evolution of flowering plants. Evol. Biol. 16, 97–128.Google Scholar
  27. Jacobs, W. P., 1952: The role of auxin in differentiation of xylem around a wound. Am. J. of Bot. 39, 301–309.CrossRefGoogle Scholar
  28. Kaplan, D. R., 1971: On the value of comparative development in phytogenetic studies — a rejoiner. Phytomorphology 21, 134–140.Google Scholar
  29. Kessler, A., 1967: The Ghost in the Machine. New York: Macmillan.Google Scholar
  30. Lillis, M., Freeling, M., 1986: Mu transposons of maize. Trends Genet. 2, 183–188.CrossRefGoogle Scholar
  31. Lord, E. M., Hill, J. P., 1987: Evidence for heterochrony in the evolution of plant form. In: Development as an Evolutionary Process. Raff, R. A., Raff, E. C. (eds.), pp. 47–70. New York: Alan R. Liss.Google Scholar
  32. Meinhardt, H., Gierer, A., 1974: Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 15, 321–346.PubMedGoogle Scholar
  33. Pinkington, M., 1929: The regeneration of the stem apex. New Phytol. 28, 37–53.CrossRefGoogle Scholar
  34. Poethig, R. S., 1984: Cellular parameters of leaf morphogenesis in maize and tobacco. In: Contemporary Problems in Plant Anatomy. White, R. A., Dickison, W. C. (eds.), pp. 235–259. New York: Academic Press.Google Scholar
  35. Raff, R. A., Kaufman, T. C., 1983: Embryos, Genes and Evolution. New York: Macmillan.Google Scholar
  36. Sachs, T., 1969: Polarity and the induction of organized vascular tissues. Ann. Bot. 33, 263–275.Google Scholar
  37. Sachs, T., 1978: Patterned differentiation in plants. Differentiation 11, 65–73.CrossRefGoogle Scholar
  38. Sharman, B. C., 1942: Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6, 245–282.Google Scholar
  39. Simon, S., 1908: Experimentelle Untersuchungen über die Entstehung von Gefäßverbindungen. Ber. Deutsch. Bot. Ges. 26, 364–396.Google Scholar
  40. Sprague, G. F., 1939: Heritable characters in maize. 50 — Vestigal glume. J. Hered. 30, 143–145.Google Scholar
  41. Stebbins, G. L., Shah, S. S., 1960: Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Gramineae. Develop. Biol. 2, 477–500.CrossRefGoogle Scholar
  42. Steffensen, D. M., 1968: A reconstruction of cell development in the shoot apex of maize. Am. J. Bot. 55, 354–369.CrossRefGoogle Scholar
  43. Stewart, R. N., Dermen, H., 1979: Ontogeny in monocotyledons as revealed by studies of the developmental anatomy of periclincal chloroplast chimeras. Am. J. Bot. 66, 47–58.CrossRefGoogle Scholar
  44. Sussex, I. M., 1953: Regeneration of the potato shoot apex. Nature 171, 224–225.PubMedCrossRefGoogle Scholar
  45. Wardlaw, C. W., 1968: Morphogenesis in Plants. London: Methuen.Google Scholar
  46. Wick, S. M., Seagull, R. W., Osborn, M., Weber, K., Gunning, B. E. S., 1981: Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J. Cell Biol. 89, 685–690.PubMedCrossRefGoogle Scholar
  47. Wolpert, L., 1968: The French flag problem: a contribution to the discussion on pattern development and regulation. In: Towards a theoretical biology, Vol. 1. Waddington, C. H. (ed.), pp. 125–133. Edinburgh: Edinburgh Univ. Press.Google Scholar
  48. Wolpert, L., 1971: Positional information and pattern formation. Curr. Top. Develop. Biol. 6, 183–224.CrossRefGoogle Scholar

Copyright information

© Springer- Verlag/Wien 1988

Authors and Affiliations

  • Michael Freeling
    • 1
  • Deverie K. Bongard-Pierce
    • 1
  • Nicholas Harberd
    • 1
  • Barbara Lane
    • 1
  • Sarah Hake
    • 2
  1. 1.Department of GeneticsUniversity of CaliforniaBerkeleyUSA
  2. 2.Plant Gene Expression CenterUSDAAlbanyUSA

Personalised recommendations