Advertisement

Genetic Engineering of Herbicide Resistance Genes

  • Dilip M. Shah
  • Charles S. Gasser
  • Guy della-Cioppa
  • Ganesh M. Kishore
Part of the Plant Gene Research book series (GENE)

Abstract

The ability to integrate functional genes stably into a plant genome not only offers a powerful approach to address the fundamental questions of developmental gene expression but also provides valuable opportunities for crop improvement (for reviews, see Fraley et al., 1986; Goodman et al, 1987). Exciting progress has been made during the last four years in the identification and transfer of genes that confer resistance to plant viruses and insect pests. Gene transfer has also been used to engineer resistance to nonselective, environmentally safe herbicides. Over the past several years, the use of herbicides has become an established practice in world agriculture. By eliminating weeds that compete with crops for water and nutrients, herbicides increase the crop yield. New highly potent herbicides have been developed that inhibit plant growth by interfering with the biosynthesis of essential amino acids, rather than by inactivating a component of the photosynthetic apparatus (Table 1) (LaRossa and Falco, 1984). These structurally unrelated herbicides include: glyphosate which inhibits the synthesis of aromatic amino acids; the sulfonylurea and imidazolinone herbicides which block branched chain amino acid biosynthesis; and phosphinothricin which inhibits glutamine biosynthesis. Although potent and environmentally safe, these herbicides have broad-spectrum activity that discriminates poorly between weeds and crops. The genetic engineering of selective resistance to these herbicides in crop species will have substantial agronomic significance and has been the major focus of research in several labs.

Keywords

Glutamine Synthetase Transit Peptide Sulfonylurea Herbicide Glyphosate Resistance EPSPS Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrhein, N., Johanning, D., Smart, G. C., 1985: A glyphosate-tolerant plant tissue culture. In: Primary and Secondary Metabolism of Plant Cell Cultures. Neumann, K. H. (ed.), pp. 356–361, Berlin, Springer-Verlag.Google Scholar
  2. Anderson, P. C., Georgeson, M., 1986: Selection and characterization of imidazolinone tolerant mutants of maize. In: The Biochemical Basis of Herbicide Action. Twenty-seventh Harden Conference Programme and Abstracts. Wye College, Ashford, United Kingdom.Google Scholar
  3. Bayer, E., Gugel, K. H., Hagele, K., Hagemaier, H., Jessipow, S., Konig, W. A., Zahner, Z., 1972: Stoffwechselprodukte von Mikroorganismen, 98. Mitteilung — Phosphinothricin and phosphinothricyl-alanyl-alanin. Helv. Chim. Acta 55, 224–239.PubMedCrossRefGoogle Scholar
  4. Chaleff, R. S., Mauvais, C. J., 1984: Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224, 1443–1445.PubMedCrossRefGoogle Scholar
  5. Chaleff, R. S., Ray, T. B., 1984: Herbicide-resistant mutants from tobacco cell cultures. Science 223, 1148–1151.PubMedCrossRefGoogle Scholar
  6. Charles, I. G, Keyte, J. W., Brammar, W. J., Smith, M., Hawkins, A. R., 1986: The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Research 14, 2201–2213.PubMedCrossRefGoogle Scholar
  7. Colanduoni, J. A., Villafranca, J. J., 1986: Inhibiton of Escherichia coli glutamine synthetase by phosphinothricin. Bioorg. Chem. 14, 163–169.CrossRefGoogle Scholar
  8. Cornai, L., Sen, L. C., Stalker, D. M., 1983: An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221, 370–371.CrossRefGoogle Scholar
  9. Cornai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., Stalker, D. M., 1985: Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317, 741–744.CrossRefGoogle Scholar
  10. DasSarma, S., Tischer, E., Goodman, H. M., 1986: Plant glutamine synthetase complements a glnA mutation in Escherichia coli. Science 232, 1242–1244.PubMedCrossRefGoogle Scholar
  11. della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T, Kishore, G. M., 1986: Translocation of the precursor of 5-enolpyruvylshikimate-3-phos-phate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. U.S.A. 83, 6873–6877.PubMedCrossRefGoogle Scholar
  12. della-Cioppa, G., Bauer, S. C., Taylor, M. L., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T., Kishore, G. M., 1987: Targeting a herbicide-resistant enzyme from Escherichia colilo chloroplasts of higher plants. Bio/technology 5, 579–584.CrossRefGoogle Scholar
  13. Donn, G., Tischer, E., Smith, J. A., Goodman, H. M., 1984: Herbicide-resistant alfalfa cells: an example of gene amplification in plants. J. Mol. Appl. Genet. 2, 621–635.PubMedGoogle Scholar
  14. Duncan, K., Lewendon, A., Coggins, J. R., 1984: The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett. 170, 59–63.CrossRefGoogle Scholar
  15. Falco, S. C., Dumas, K. S., 1985: Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 109, 21–35.PubMedGoogle Scholar
  16. Fillatti, J. J., Kiser, J., Rose, R., Cornai, L., 1987: Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/technology, in press.Google Scholar
  17. Fraley, R. T., Rogers, S. G., Horsch, R. B., 1986: Genetic transformation in higher plants. CRC Crit. Rev. in Plant Sci. 4, 1–46.CrossRefGoogle Scholar
  18. Goodman, R. M., Hauptli, H., Crossway, A., Knauf, V. C., 1987: Gene transfer in crop improvement. Science 236, 48–54.PubMedCrossRefGoogle Scholar
  19. Haughn, G. W., Somerville, C., 1986: Sulfonylurea resistant mutants of Arabidopsis thaliana. Mol. Gen. Genet. 204, 430–434.CrossRefGoogle Scholar
  20. Jones, A. V., Young, R. M., Leto, K., 1985: Subcellular localization and properties of acetolactate synthase, target/site of the sulfonylurea herbicides. Plant Physiol. 77, S293.Google Scholar
  21. Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, K., della-Cioppa, G., 1986: Isolation, purification and characterization of a glyphosate tolerant mutant E. coli EPSP synthase. Fed. Proc. 45, 1506.Google Scholar
  22. LaRossa, R. A., Falco, S. C., 1984: Amino acid biosynthetic enzymes as targets of herbicide action. Trends in Biotech. 2, 158–161.CrossRefGoogle Scholar
  23. LaRossa, R. A., Schloss, J. V., 1984: The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259, 8753–8757.PubMedGoogle Scholar
  24. LaRossa, R. A., Smulski, D. R., 1984: ilvB-encoded acetolactate synthase is resistant to the herbicide sulfometuron methyl. J. Bacteriol. 160, 391–394.PubMedGoogle Scholar
  25. Leason, M., Cunliffe, D., Parkin, D., Lea, P. J., Miflin, B. J., 1982: Inhibition of pea glutamine synthetase by methionine-sulfoxamine, phosphinothricin and other glutamate analogues. Phytochem. 21, 855–857.CrossRefGoogle Scholar
  26. Levitt, G., Ploeg, H. L., Weigel, R. C., Fitzgerald, D. J., 1981: 2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino-carbonyl] benzenesulfonamide, a new herbicide. J. Agric. Food. Chem. 29, 416–424.CrossRefGoogle Scholar
  27. Manderscheid, R., Wild, A., 1986: Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L. J. Plant Physiol. 123, 135–142.Google Scholar
  28. Margulis, L., 1970: Origin of Eukaryotic Cells. Yale University Press, New Haven, Connecticut.Google Scholar
  29. Miflin, B. J., Lea, P. J., 1977: Amino acid metabolism. Ann. Rev. Plant Physiol. 28, 299–329.CrossRefGoogle Scholar
  30. Mousdale, D. M., Coggins, J. R., 1984: Purification and properties of 5-enolpyru-vylshikimate-3-phosphate synthase from seedlings of Pisum sativum L. Planta 160, 78–83.CrossRefGoogle Scholar
  31. Mousdale, D. M., Coggins, J. R., 1985: Subcellular localization of the common shikimate pathway enzymes in Pusum sativum L. Planta 163, 241–249.CrossRefGoogle Scholar
  32. Nafziger, E. D., Widholm, J. M., Steinrucken, H. C., Kilmer, J. L., 1984: Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76, 571–574.PubMedCrossRefGoogle Scholar
  33. Orwick, P. L., Marc, P. A., Umeda, K., Shaner, D. L., Los, M., Ciarlante, D. R., 1983: AC 252,214 — A new broad spectrum herbicide for soybeans: greenhouse studies. Proc. South Weed. Sci. Soc. 36, 90.Google Scholar
  34. Ray, T. B., 1984: Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75, 827–831.PubMedCrossRefGoogle Scholar
  35. Rogers, S. G., Brand, L. A., Holder, S. B., Sharps, E. S., Brackin, M. J., 1983: Amplification of the aroA gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46, 37–43.PubMedGoogle Scholar
  36. Rubin, J. L., Gaines, C., Jensen, R. A., 1984: Glyphosate inhibiton of 5-enolpyru-vylshikimate-3-phosphate synthase from suspension cultured cells of Nicotiana silvestris. Plant Physiol. 75, 839–846.PubMedCrossRefGoogle Scholar
  37. Schimke, R. T., 1984: Gene amplification in cultured animal cells. Cell 37, 705–713.PubMedCrossRefGoogle Scholar
  38. Schulz, A., Sost, D., Amrhein, N., 1984: Insensitivity of 5-enolpyruvylshikimic acid 3-phosphate synthase confers resistance to this herbicide in a strain of Aero-bacter aerogenes. Arch. Microbiol. 137, 121–123.CrossRefGoogle Scholar
  39. Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., Fraley, R. T., 1986: Engineering herbicide tolerance in transgenic plants. Science 233, 478–481.PubMedCrossRefGoogle Scholar
  40. Shaner, D. L., Robson, P., Simcox, P. D., Ciarlante, D. R., 1983: Absorption, translocation and metabolism of AC 252,214 in soybeans, cocklebur and velvetleaf. Proc. South Weed. Sci. Soc. 36, 92.Google Scholar
  41. Shaner, D. L., Anderson, P. C., Stidham, M. A., 1984: Imidazolinones-potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76, 545–546.PubMedCrossRefGoogle Scholar
  42. Siehl, D. L., Singh, B. K., Conn, E. E., 1986: Tissue distribution and subcellular localization of prephenate aminotransferase in leaves of Sorghum bicolor. Plant Physiol. 81, 711–713.PubMedCrossRefGoogle Scholar
  43. Singer, S. R., McDaniel, C. N., 1985: Selection of glyphosate-tolerant calli and the expression of this tolerance in regenerated plants. Plant Physiol. 78, 411–416.PubMedCrossRefGoogle Scholar
  44. Skokut, T. A., Wolk, C. P., Thomas, J., Meeks, J. C., Shaffer, P. W., 1987: Initial organic products of assimilation of [13N] ammonium and [13N] nitrate by tobacco cells cultured on different sources of nitrogen. Plant Physiol. 62, 299–304.CrossRefGoogle Scholar
  45. Smart, C., Johanning, D., Muller, G., Amrhein, N., 1985: Selective overproduction of 5-enolpyruvylshikimic acid 3-phosphate synthase in a plant cell culture which tolerates high doses of the herbicide glyphosate. J. Biol. Chem. 260, 16338–16346.PubMedGoogle Scholar
  46. Smith, C. M., Pratt, D., Thompson, G. A., 1985: Increased 5-enolpyruvylshikimic acid 3-phosphate synthase activity in a glyphosate-tolerant variant strain of tomato cells. Plant Cell Rep. 5, 298–301.CrossRefGoogle Scholar
  47. Sost, D., Schulz, A., Amrhein, N., 1984: Characterization of a glyphosate-insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase. FEBS Lett. 238–242.Google Scholar
  48. Stalker, D. M., Hiatt, W. R., Cornai, L., 1985: A single amino acid substitution of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260, 4724–4728.PubMedGoogle Scholar
  49. Steinrucken, H. C., Amrhein, N., 1980: The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Bio-phys. Res. Commun. 94, 1207–1212.CrossRefGoogle Scholar
  50. Steinrucken, H. C., Schulz, A., Amrhein, N., Porter, C. A., Fraley, R. T., 1986: Over-production of 5-enolpyruvylshikimate-3-phosphate synthase in glyphosate-tolerant petunia hybrida cell line. Arch. Biochem. Biophys. 244, 169–173.PubMedCrossRefGoogle Scholar
  51. Sweetser, P. B., Schow, G. S., Hutchison, J. M., 1982: Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17, 18–23.CrossRefGoogle Scholar
  52. Tachibana, K., Watanabe, T., Sekizuwa, Y., Takematsu, T., 1986: Action mechanism of bialaphos. 2. Accumulation of ammonia in plants treated with bi-alaphos. J. Pest. Sci. 11, 33–37.Google Scholar
  53. Yadav, N., McDevitt, R. E., Benard, S., Falco, S. C., 1986: Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. 83, 4418–4422.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Dilip M. Shah
    • 1
  • Charles S. Gasser
    • 1
  • Guy della-Cioppa
    • 1
  • Ganesh M. Kishore
    • 1
  1. 1.Plant Molecular Biology, Divison of Biological SciencesMonsanto CompanySt. LouisUSA

Personalised recommendations