Skip to main content

Genetic Engineering of Herbicide Resistance Genes

  • Chapter
Temporal and Spatial Regulation of Plant Genes

Part of the book series: Plant Gene Research ((GENE))

Abstract

The ability to integrate functional genes stably into a plant genome not only offers a powerful approach to address the fundamental questions of developmental gene expression but also provides valuable opportunities for crop improvement (for reviews, see Fraley et al., 1986; Goodman et al, 1987). Exciting progress has been made during the last four years in the identification and transfer of genes that confer resistance to plant viruses and insect pests. Gene transfer has also been used to engineer resistance to nonselective, environmentally safe herbicides. Over the past several years, the use of herbicides has become an established practice in world agriculture. By eliminating weeds that compete with crops for water and nutrients, herbicides increase the crop yield. New highly potent herbicides have been developed that inhibit plant growth by interfering with the biosynthesis of essential amino acids, rather than by inactivating a component of the photosynthetic apparatus (Table 1) (LaRossa and Falco, 1984). These structurally unrelated herbicides include: glyphosate which inhibits the synthesis of aromatic amino acids; the sulfonylurea and imidazolinone herbicides which block branched chain amino acid biosynthesis; and phosphinothricin which inhibits glutamine biosynthesis. Although potent and environmentally safe, these herbicides have broad-spectrum activity that discriminates poorly between weeds and crops. The genetic engineering of selective resistance to these herbicides in crop species will have substantial agronomic significance and has been the major focus of research in several labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrhein, N., Johanning, D., Smart, G. C., 1985: A glyphosate-tolerant plant tissue culture. In: Primary and Secondary Metabolism of Plant Cell Cultures. Neumann, K. H. (ed.), pp. 356–361, Berlin, Springer-Verlag.

    Google Scholar 

  • Anderson, P. C., Georgeson, M., 1986: Selection and characterization of imidazolinone tolerant mutants of maize. In: The Biochemical Basis of Herbicide Action. Twenty-seventh Harden Conference Programme and Abstracts. Wye College, Ashford, United Kingdom.

    Google Scholar 

  • Bayer, E., Gugel, K. H., Hagele, K., Hagemaier, H., Jessipow, S., Konig, W. A., Zahner, Z., 1972: Stoffwechselprodukte von Mikroorganismen, 98. Mitteilung — Phosphinothricin and phosphinothricyl-alanyl-alanin. Helv. Chim. Acta 55, 224–239.

    Article  PubMed  CAS  Google Scholar 

  • Chaleff, R. S., Mauvais, C. J., 1984: Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224, 1443–1445.

    Article  PubMed  CAS  Google Scholar 

  • Chaleff, R. S., Ray, T. B., 1984: Herbicide-resistant mutants from tobacco cell cultures. Science 223, 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Charles, I. G, Keyte, J. W., Brammar, W. J., Smith, M., Hawkins, A. R., 1986: The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Research 14, 2201–2213.

    Article  PubMed  CAS  Google Scholar 

  • Colanduoni, J. A., Villafranca, J. J., 1986: Inhibiton of Escherichia coli glutamine synthetase by phosphinothricin. Bioorg. Chem. 14, 163–169.

    Article  CAS  Google Scholar 

  • Cornai, L., Sen, L. C., Stalker, D. M., 1983: An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221, 370–371.

    Article  Google Scholar 

  • Cornai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., Stalker, D. M., 1985: Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317, 741–744.

    Article  Google Scholar 

  • DasSarma, S., Tischer, E., Goodman, H. M., 1986: Plant glutamine synthetase complements a glnA mutation in Escherichia coli. Science 232, 1242–1244.

    Article  PubMed  CAS  Google Scholar 

  • della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T, Kishore, G. M., 1986: Translocation of the precursor of 5-enolpyruvylshikimate-3-phos-phate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. U.S.A. 83, 6873–6877.

    Article  PubMed  CAS  Google Scholar 

  • della-Cioppa, G., Bauer, S. C., Taylor, M. L., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T., Kishore, G. M., 1987: Targeting a herbicide-resistant enzyme from Escherichia colilo chloroplasts of higher plants. Bio/technology 5, 579–584.

    Article  CAS  Google Scholar 

  • Donn, G., Tischer, E., Smith, J. A., Goodman, H. M., 1984: Herbicide-resistant alfalfa cells: an example of gene amplification in plants. J. Mol. Appl. Genet. 2, 621–635.

    PubMed  CAS  Google Scholar 

  • Duncan, K., Lewendon, A., Coggins, J. R., 1984: The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett. 170, 59–63.

    Article  CAS  Google Scholar 

  • Falco, S. C., Dumas, K. S., 1985: Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 109, 21–35.

    PubMed  CAS  Google Scholar 

  • Fillatti, J. J., Kiser, J., Rose, R., Cornai, L., 1987: Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/technology, in press.

    Google Scholar 

  • Fraley, R. T., Rogers, S. G., Horsch, R. B., 1986: Genetic transformation in higher plants. CRC Crit. Rev. in Plant Sci. 4, 1–46.

    Article  CAS  Google Scholar 

  • Goodman, R. M., Hauptli, H., Crossway, A., Knauf, V. C., 1987: Gene transfer in crop improvement. Science 236, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Haughn, G. W., Somerville, C., 1986: Sulfonylurea resistant mutants of Arabidopsis thaliana. Mol. Gen. Genet. 204, 430–434.

    Article  CAS  Google Scholar 

  • Jones, A. V., Young, R. M., Leto, K., 1985: Subcellular localization and properties of acetolactate synthase, target/site of the sulfonylurea herbicides. Plant Physiol. 77, S293.

    Google Scholar 

  • Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, K., della-Cioppa, G., 1986: Isolation, purification and characterization of a glyphosate tolerant mutant E. coli EPSP synthase. Fed. Proc. 45, 1506.

    Google Scholar 

  • LaRossa, R. A., Falco, S. C., 1984: Amino acid biosynthetic enzymes as targets of herbicide action. Trends in Biotech. 2, 158–161.

    Article  CAS  Google Scholar 

  • LaRossa, R. A., Schloss, J. V., 1984: The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259, 8753–8757.

    PubMed  CAS  Google Scholar 

  • LaRossa, R. A., Smulski, D. R., 1984: ilvB-encoded acetolactate synthase is resistant to the herbicide sulfometuron methyl. J. Bacteriol. 160, 391–394.

    PubMed  CAS  Google Scholar 

  • Leason, M., Cunliffe, D., Parkin, D., Lea, P. J., Miflin, B. J., 1982: Inhibition of pea glutamine synthetase by methionine-sulfoxamine, phosphinothricin and other glutamate analogues. Phytochem. 21, 855–857.

    Article  CAS  Google Scholar 

  • Levitt, G., Ploeg, H. L., Weigel, R. C., Fitzgerald, D. J., 1981: 2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino-carbonyl] benzenesulfonamide, a new herbicide. J. Agric. Food. Chem. 29, 416–424.

    Article  CAS  Google Scholar 

  • Manderscheid, R., Wild, A., 1986: Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L. J. Plant Physiol. 123, 135–142.

    CAS  Google Scholar 

  • Margulis, L., 1970: Origin of Eukaryotic Cells. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Miflin, B. J., Lea, P. J., 1977: Amino acid metabolism. Ann. Rev. Plant Physiol. 28, 299–329.

    Article  CAS  Google Scholar 

  • Mousdale, D. M., Coggins, J. R., 1984: Purification and properties of 5-enolpyru-vylshikimate-3-phosphate synthase from seedlings of Pisum sativum L. Planta 160, 78–83.

    Article  CAS  Google Scholar 

  • Mousdale, D. M., Coggins, J. R., 1985: Subcellular localization of the common shikimate pathway enzymes in Pusum sativum L. Planta 163, 241–249.

    Article  CAS  Google Scholar 

  • Nafziger, E. D., Widholm, J. M., Steinrucken, H. C., Kilmer, J. L., 1984: Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76, 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Orwick, P. L., Marc, P. A., Umeda, K., Shaner, D. L., Los, M., Ciarlante, D. R., 1983: AC 252,214 — A new broad spectrum herbicide for soybeans: greenhouse studies. Proc. South Weed. Sci. Soc. 36, 90.

    Google Scholar 

  • Ray, T. B., 1984: Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75, 827–831.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. G., Brand, L. A., Holder, S. B., Sharps, E. S., Brackin, M. J., 1983: Amplification of the aroA gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46, 37–43.

    PubMed  CAS  Google Scholar 

  • Rubin, J. L., Gaines, C., Jensen, R. A., 1984: Glyphosate inhibiton of 5-enolpyru-vylshikimate-3-phosphate synthase from suspension cultured cells of Nicotiana silvestris. Plant Physiol. 75, 839–846.

    Article  PubMed  CAS  Google Scholar 

  • Schimke, R. T., 1984: Gene amplification in cultured animal cells. Cell 37, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, A., Sost, D., Amrhein, N., 1984: Insensitivity of 5-enolpyruvylshikimic acid 3-phosphate synthase confers resistance to this herbicide in a strain of Aero-bacter aerogenes. Arch. Microbiol. 137, 121–123.

    Article  CAS  Google Scholar 

  • Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., Fraley, R. T., 1986: Engineering herbicide tolerance in transgenic plants. Science 233, 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Shaner, D. L., Robson, P., Simcox, P. D., Ciarlante, D. R., 1983: Absorption, translocation and metabolism of AC 252,214 in soybeans, cocklebur and velvetleaf. Proc. South Weed. Sci. Soc. 36, 92.

    Google Scholar 

  • Shaner, D. L., Anderson, P. C., Stidham, M. A., 1984: Imidazolinones-potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76, 545–546.

    Article  PubMed  CAS  Google Scholar 

  • Siehl, D. L., Singh, B. K., Conn, E. E., 1986: Tissue distribution and subcellular localization of prephenate aminotransferase in leaves of Sorghum bicolor. Plant Physiol. 81, 711–713.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. R., McDaniel, C. N., 1985: Selection of glyphosate-tolerant calli and the expression of this tolerance in regenerated plants. Plant Physiol. 78, 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Skokut, T. A., Wolk, C. P., Thomas, J., Meeks, J. C., Shaffer, P. W., 1987: Initial organic products of assimilation of [13N] ammonium and [13N] nitrate by tobacco cells cultured on different sources of nitrogen. Plant Physiol. 62, 299–304.

    Article  Google Scholar 

  • Smart, C., Johanning, D., Muller, G., Amrhein, N., 1985: Selective overproduction of 5-enolpyruvylshikimic acid 3-phosphate synthase in a plant cell culture which tolerates high doses of the herbicide glyphosate. J. Biol. Chem. 260, 16338–16346.

    PubMed  CAS  Google Scholar 

  • Smith, C. M., Pratt, D., Thompson, G. A., 1985: Increased 5-enolpyruvylshikimic acid 3-phosphate synthase activity in a glyphosate-tolerant variant strain of tomato cells. Plant Cell Rep. 5, 298–301.

    Article  Google Scholar 

  • Sost, D., Schulz, A., Amrhein, N., 1984: Characterization of a glyphosate-insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase. FEBS Lett. 238–242.

    Google Scholar 

  • Stalker, D. M., Hiatt, W. R., Cornai, L., 1985: A single amino acid substitution of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260, 4724–4728.

    PubMed  CAS  Google Scholar 

  • Steinrucken, H. C., Amrhein, N., 1980: The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Bio-phys. Res. Commun. 94, 1207–1212.

    Article  CAS  Google Scholar 

  • Steinrucken, H. C., Schulz, A., Amrhein, N., Porter, C. A., Fraley, R. T., 1986: Over-production of 5-enolpyruvylshikimate-3-phosphate synthase in glyphosate-tolerant petunia hybrida cell line. Arch. Biochem. Biophys. 244, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Sweetser, P. B., Schow, G. S., Hutchison, J. M., 1982: Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17, 18–23.

    Article  CAS  Google Scholar 

  • Tachibana, K., Watanabe, T., Sekizuwa, Y., Takematsu, T., 1986: Action mechanism of bialaphos. 2. Accumulation of ammonia in plants treated with bi-alaphos. J. Pest. Sci. 11, 33–37.

    CAS  Google Scholar 

  • Yadav, N., McDevitt, R. E., Benard, S., Falco, S. C., 1986: Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. 83, 4418–4422.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag/Wien

About this chapter

Cite this chapter

Shah, D.M., Gasser, C.S., della-Cioppa, G., Kishore, G.M. (1988). Genetic Engineering of Herbicide Resistance Genes. In: Verma, D.P.S., Goldberg, R.B. (eds) Temporal and Spatial Regulation of Plant Genes. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6950-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6950-6_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7448-7

  • Online ISBN: 978-3-7091-6950-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics