Advertisement

Protein Transport in Plant Cells

  • Peter Weisbeek
  • Sjef Smeekens
Part of the Plant Gene Research book series (GENE)

Abstract

In plant cells several subcellular structures can be recognized. These include the nucleus, the endoplasmic reticulum, the Golgi system, endosomes (e. g. peroxisomes and glyoxysomes), mitochondria, chloroplasts and thylakoids. They are all surrounded by a single or a double lipid bilayer and constitute in general separate compartments within the cell. In addition the different membranes themselves and the outside of the cell can be viewed as other compartments. Each of these subcellular structures and their enclosing or internal membranes contains many different proteins, yet most of these compartments do not have the machinery to synthesize the proteins they need. Only the nucleus, the mitochondrion and the chloroplast contain DNA and are capable of transcribing this genetic information into RNA, and only the chloroplast and the mitochondrion are capable of translating this RNA into protein. All nuclear transcripts are transported out of the nucleus and exclusively translated in the cytosol.

Keywords

Thylakoid Membrane Small Subunit Mature Protein Transit Peptide Envelope Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitsch, A., Kloppstech, K., 1986: Transport of proteins into chloroplasts: reconstitution of the binding capacity for nuclear-encoded precursor proteins after solubilization of envelopes with detergents. Eur. J. Biochem. 40, 160–166.Google Scholar
  2. Borst, P., 1986: How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim. Biophys. Acta 866, 179–203.PubMedGoogle Scholar
  3. Boutry, M., Chua, N.-H., 1985: A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginafolia. EMBO J. 4, 2159–2165.PubMedGoogle Scholar
  4. Boyle, S. A., Hemmingsen, S. M., Dennis, D. T., 1986: Uptake and processing of the precursor of the small subunit of ribulose 1, 5-bisphosphate carboxylase by leucoplasts from the endosperm of developing castor oil seeds. Plant Physiol. 81, 817–822.PubMedCrossRefGoogle Scholar
  5. Chitnis, P. R., Harel, E., Kohorn, B. D., Tobin, E. M., Thornber, J. P., 1986: Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etiochloro-plasts. J. Cell Biol. 102, 982–988.PubMedCrossRefGoogle Scholar
  6. Cline, K., Werner-Washburne, M., Lubben, T. H., Keegstra, K., 1985: Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J. Biol. Chem. 260, 3691–3696.PubMedGoogle Scholar
  7. Cline, K., 1986: Import of proteins in chloroplasts. Membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J. Biol. Chem. 261, 14804–14810.PubMedGoogle Scholar
  8. Dabauvalle, M. C., Franke, W. W., 1982: Karyophilic proteins: polypeptides synthesized in vitro accumulate in the nucleus upon microinjection into the cytoplasm of amphibian oocytes. Proc. Nat. Acad. Sciences U.S.A. 79, 5302–5306.CrossRefGoogle Scholar
  9. De Robertis, E. M., 1986: Nucleocytoplasmic segregation of proteins and RNAs. Cell 32, 1021–1025.CrossRefGoogle Scholar
  10. Dobberstein, B., Blobel, G., Chua, N.-H., 1977: In vitro synthesis and processing of a putative precursor for the small subunit of ribulose 1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc. Nat. Acad. Sciences U.S.A. 74, 1082–1085.CrossRefGoogle Scholar
  11. Eilers, M., Schatz, G., 1986: Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232.PubMedCrossRefGoogle Scholar
  12. Flugge, U. I., Hinz, G., 1986: Energy dependence of protein translocation into chloroplasts. Eur. J. Biochem. 160, 563–570.PubMedCrossRefGoogle Scholar
  13. Flugge, U. I., Wessel, D., 1984: Cell-free synthesis of putative precursors for envelope membrane polypeptides of spinach chloroplasts. FEBS 168, 255–259.CrossRefGoogle Scholar
  14. Fujiki, Y., Rachibinski, R. A., Lazarow, P. B., 1984: Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc. Natl. Acad. Sci. U.S.A. 81, 7127–7131.PubMedCrossRefGoogle Scholar
  15. Gietl, C., Hock, B., 1984: Import of in-vitro-synthesized glyoxysomal malate dehydrogenase into isolated watermelon glyoxysomes. Planta 162, 261–267.CrossRefGoogle Scholar
  16. Goldfarb, D. S., Gariepy, J., Schoolnik, G., Kornberg, R. D., 1986: Synthetic peptides as nuclear localization signals. Nature 322, 641–644.PubMedCrossRefGoogle Scholar
  17. Grivell, L., 1983: Mitochondrial DNA. Sci. Amer. March, 60–73.Google Scholar
  18. Hageman, J., Robinson, C., Smeekens, S., Weisbeek, P., 1986: A thylakoid-located processing protease is required for complete maturation of the lumen protein plastocyanin. Nature 324, 567–569.CrossRefGoogle Scholar
  19. Haiti, F.-U., Schmidt, B., Wachter, E., Weiss, H., Neupert, W., 1987: Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubi-quinol-cytochrome c reductase. Cell, 939–950.Google Scholar
  20. Hase, T., Muller, U., Riezman, H., Schatz, G., 1984: A 70 kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. EMBO J. 3, 3157–3164.PubMedGoogle Scholar
  21. Herrmann, R. G., Alt, J., Schiller, B., Widger, W. R., Cramer, W. A., 1984: Nucleotide sequence of the gene for apocytochrome b-559 on the spinach plastid chromosome: implications for the structure of the membrane protein. FEBS 176, 239–244.CrossRefGoogle Scholar
  22. Hurt, E., Muller, U., Schatz, G., 1985: The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclearencoded cytochrome oxidase subunit to the mitochondrial inner membrane. EMBO J. 4, 3509–3518.PubMedGoogle Scholar
  23. Hurt, E. C., Van Loon, A. P. M., 1986: How proteins find mitochondria and intramitochondrial compartments. TIBS 11, 204–207.Google Scholar
  24. Hurt, E. C., Soltanifar, N., Goldschmidt-Clermont, M., Rochaix, J.-D., Schatz, G., 1986: The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J. 5, 1343–1350.PubMedGoogle Scholar
  25. Kalderon, D., Roberts, B. L., Richardson, W. D., Smith, A. E., 1984: A short amino acid sequence able to specify nuclear location. Cell 39, 499–509.PubMedCrossRefGoogle Scholar
  26. Karlin-Neumann, G. A., Tobin, E. M., 1986: Transit peptides of nuclearencoded chloroplast proteins share a common amino acid framework. EMBO J. 5, 9–13.PubMedGoogle Scholar
  27. Kellems, R., Allison, V., Butow, R., 1974: Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria. J. Cell Biol. 65, 1–14.CrossRefGoogle Scholar
  28. Kohorn, B. D., Harel, E., Chitnis, P. R., Thornber, J. P., Tobin, E. M., 1986: Funtional and mutational analysis of the light-harvesting chlorophyll a/b protein of thylakoid membranes. J. Cell Biol. 102, 972–981.PubMedCrossRefGoogle Scholar
  29. Kuntz, M., Simons, A., Schell, J., Schreier, P. H., 1986: Targeting of protein to chloroplasts in transgenic tobacco by fusion to mutated transit peptide. Mol. Gen. Genet. 205, 454–460.CrossRefGoogle Scholar
  30. Lanford, R. E., Kanda, P., Kennedy, R. C., 1986: Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46, 575–582.PubMedCrossRefGoogle Scholar
  31. Lubben, T., Keegstra, K., 1986: Efficient in vitro import of a cytosolic heatshock protein into pea chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 83, 5502–5506.PubMedCrossRefGoogle Scholar
  32. Miura, S., Mori, M., Amaya, Y., Tatibaba, M., 1982: A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase. Purification and properties. Eur. J. Biochem. 122, 641–647.PubMedCrossRefGoogle Scholar
  33. Morris, J., Herrmann, R. G., 1984: Nucleotide sequence of the gene for the P680 chlorophyll a apoprotein of the photosystem II reaction center of spinach. Nucl. Acid Res. 12, 2837–2850.CrossRefGoogle Scholar
  34. Nguyen, T., Zelechowska, M., Foster, V., Bergmann, H., Verma, D. P. S., 1987: Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc. Natl. Acad. Sci. U.S.A. 82, 5040–5044.CrossRefGoogle Scholar
  35. Perara, E., Rothman, R. E., Lingappa, V. R., 1986: Uncoupling of translocation from translation: implications for transport of proteins across membranes. Science 232, 348–352.PubMedCrossRefGoogle Scholar
  36. Pfanner, N., Neupert, W., 1986: Transport of F1-ATPase subunit beta into mitochondria depends on both membrane potential and nucleoside triphosphates. FEBS 209, 152–156.CrossRefGoogle Scholar
  37. Pfisterer, J., Lachmann, P., Kloppstech, K., 1982: Transport of proteins into chloroplasts. Binding of nuclear encoded proteins to the chloroplast envelope. Eur. J. Biochem. 126, 143–148.PubMedCrossRefGoogle Scholar
  38. Ried, G. A., Schatz, G., 1982: Import of proteins into mitochondria. Extramitochondrial pools and post-translational import of mitochondrial protein precursors in vivo. J. Biol. Chem. 257, 13062–13074.Google Scholar
  39. Robinson, C., Ellis, R. J., 1984: Transport of proteins into chloroplasts. Partial purification of a chloroplast protease involved in the processing of imported precursor polypeptides. Eur. J. Biochem. 142, 337–342.PubMedCrossRefGoogle Scholar
  40. Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H., Schatz, G., 1986: A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5, 1327–1334.PubMedGoogle Scholar
  41. Rothstein, S. J., Gatenby, A. A., Willey, D. L., Gray, J. C., 1985: Binding of pea cytochrome f to the inner membrane of Escherichia coli requires the bacterial secA gene product. Proc. Natl. Acad. Sciences 82, 7955–7959.CrossRefGoogle Scholar
  42. Schindler, C., Soll, J., 1986: Protein transport in intact purified pea etioplasts. Arch. Biochem. Biophys. 247, 211–220.PubMedCrossRefGoogle Scholar
  43. Shinozaki, K., Sugiura, M., 1986: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049.PubMedGoogle Scholar
  44. Smeekens, S., Van Binsbergen, J., Weisbeek, P., 1985a: The plant ferredoxin precursor: nucleotide sequence of a full-length cDNA clone. Nucl. Acids Res. 13, 3179–3194.PubMedCrossRefGoogle Scholar
  45. Smeekens, S., De Groot, M., Van Binsbergen, J., Weisbeek, P., 1985 b: The sequence of the precursor of the chloroplast thylakoid lumen protein plasto-cyanin. Nature 317, 456–458.CrossRefGoogle Scholar
  46. Smeekens, S., Bauerle, C., Hageman, J., Keegstra, K., Weisbeek, P., 1986 a: The role of the transit peptide in the routing of precursors towards different chloroplast compartments. Cell 46, 365–375.PubMedCrossRefGoogle Scholar
  47. Smeekens, S., Van Oosten, J., De Groot, M., Weisbeek, P., 1986 b: Silene cDNA clones for a divergent chlorophyll-A/B-binding protein and a small subunit of ribulosebisphosphate carboxylase. Plant Mol. Biol. 7, 433–441.CrossRefGoogle Scholar
  48. Van den Broeck, G., Timko, M. P., Kausch, A. P., Cashmore, A. R., Montagu, M. van, Herrera-Estrella, L., 1985: Targeting of foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1, 5-bisphosphate carboxylase. Nature 313, 358–363.PubMedCrossRefGoogle Scholar
  49. Von Heijne, G., 1985: Signal sequences. The limit of variation. J. Mol. Biol. 184, 99–105.CrossRefGoogle Scholar
  50. Wasmann, C., Reiss, B., Bartlett, S. G., Bohnert, H. J., 1986: The importance of the transit peptide and the transported protein for protein import into chloroplasts. Mol. Gen. Genet. 205, 446–453.CrossRefGoogle Scholar
  51. Wiley, D. L., Auffret, A. D., Gray, J. C., 1984: Structure and topology of cytochrome f in pea chloroplast membranes. Cell 36, 555–562.CrossRefGoogle Scholar
  52. Yamaguchi, J., Nishimura, M., Akazawa, T., 1984: Maturation of catalase precursor proceeds to a different extent in glyoxysomes and leaf peroxisomes of pumpkin cotyledons. Proc. Natl. Acad. Sci. U.S.A. 81, 4809–4813.PubMedCrossRefGoogle Scholar
  53. Yoshida, Y., Hashimoto, T., Kimura, H., Sakakibara, S., Tagawa, K., 1985: Interaction with mitochondrial membranes of a synthetic peptide with a sequence common to extra peptides of mitochondrial precursor proteins. Biochem. Biophys. Res. Comm. 128, 775–780.PubMedCrossRefGoogle Scholar
  54. Zwizinski, C., Neupert, W., 1983: Precursor proteins are transported into mitochondria in the absence of proteolytic cleavage of the additional sequences. J. Biol. Chem. 258, 13340–13346.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Peter Weisbeek
    • 1
  • Sjef Smeekens
    • 1
  1. 1.Department of Molecular Cell Biology and Institute of Molecular BiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations