The Expression of Heat Shock Genes — A Model for Environmental Stress Response

  • Fritz Schöffl
  • Götz Baumann
  • Eberhard Raschke
Part of the Plant Gene Research book series (GENE)


When cells, tissues, or whole organisms are subjected to grossly elevated temperatures or heat shock (hs), they respond transiently by synthesizing a number of new proteins, the prevalent heat shock proteins (hsps). Hsps are operationally defined as those proteins whose synthesis is immediately and dramatically induced at high temperatures. The induction of hsp synthesis is the major feature of the hs response; other aspects of the reprogramming of cellular activities are less well understood (for recent reviews see Burdon, 1986; Lindquist, 1986; Nagao et al., 1986; Schlesinger, 1986; Schöffl et al., 1986). Some of the general characteristics relevant to plants are briefly summarized here.


Heat Shock Heat Shock Protein Heat Shock Response Small Heat Shock Protein Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexeev, D. G., Lipanov, A. A., Skuratovskii, I. Y., 1987: Poly(dA)/poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature (Lond.) 325, 821–823.CrossRefGoogle Scholar
  2. Anathan, J., Goldberg, A. L., Voellmy, R., 1986: Abnormal proteins serve as eukaryotic stress signals and trigger the activity of heat shock genes. Science 232, 522–524.CrossRefGoogle Scholar
  3. Ayme, A., Tissières, A., 1985: Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J. 4, 2949–2954.PubMedGoogle Scholar
  4. Baumann, G., Raschke, E., Bevan, M., Schöffl, F., 1987: Functional analysis of sequences required for transcriptional activation of a soybean heat shock gene in transgenic tobacco plants. EMBO J., 6, 1161–1166.PubMedGoogle Scholar
  5. Berry, J., Björkman, O., 1980: Photosynthetic response and adaption to temperature in higher plants. Ann. Rev. PL Physiol. 31, 491–543.CrossRefGoogle Scholar
  6. Bienz, M., 1985: Transient and developmental activation of heat shock genes. Trends Biochem. Sci. 10, 157–161.CrossRefGoogle Scholar
  7. Blackman, R. K., Meselson, M., 1986: Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J. Mol. Biol. 188, 499–516.PubMedCrossRefGoogle Scholar
  8. Brown, G. G., Lee, J. S., Brisson, N., Verma, D. P. S., 1984: The evolution of a plant globin gene family. J. Mol. Evol. 21, 19–32.PubMedCrossRefGoogle Scholar
  9. Brugge, J., Erikson, E., Erikson, R. L., 1981: The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25, 363–372.PubMedCrossRefGoogle Scholar
  10. Burdon, R. H., 1986: Heat shock and the heat shock proteins. Biochem. J. 240, 313–324.PubMedGoogle Scholar
  11. Burke, J. J., Hatfield, J. L., Klein, R. R., Mullet, J. E., 1985: Accumulation of heat shock proteins in field grown cotton. PL Physiol. 78, 394–398.CrossRefGoogle Scholar
  12. Catelli, M. G., Binait, N., Jung-Testas, I., Renoir, J. M., Baulieu, E. E., Feramisco, J. R., Welch, W. J., 1985: The common 90 kd protein component of non-transformed “8S” steroid receptors is a heat shock protein. EMBO J. 4, 3131–3135.PubMedGoogle Scholar
  13. Cooper, P., Ho, T.-D., Hauptman, R. M., 1984: Tissue specificity of the heat shock response in maize. PL Physiol. 75, 431–441.CrossRefGoogle Scholar
  14. Coldrion-Raichlen, P., Dietrich, P. S., Sinibaldi, R. M., 1986: The heat shock response of Arabidopsis thaliana. J. Cell Biol. 103, 176a.Google Scholar
  15. Czarnecka, E., Edelmann, L., Schöffl, F., Key, J. L., 1984: Comparative analysis of physical stress responses in soybean using cloned cDNAs. Pl. Molec. Biol. 3, 45–58.CrossRefGoogle Scholar
  16. Czarnecka, E., Gurley, W. B., Nagao, R. T., Mosquera, L. A., Key, J. L., 1985: DNA sequence and transcript mapping of a soybean heat shock gene encoding a small heat shock protein. Proc. Natl. Acad. Sci. U. S.A. 82, 3726–3730.PubMedCrossRefGoogle Scholar
  17. De Jong, W. W., 1982: Eye lens proteins and vertebrate phylogeny. In: Macromo-lecular sequences in systematic and evolutionary biology. pp. 75–114. Goodman, M. (ed.). Plenum Press, New York.Google Scholar
  18. Dietrich, P. S., Bouchard, R. A., Sinibaldi, R. M., 1986: Isolation of maize 83, 70 and 18 kDa HS genes. J. Cell Biol. 103, 311a.Google Scholar
  19. Ellis, J. G., Llewellyn, D. J., Dennis, E. S., Peacock, W. J., 1987: Maize Adh-1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 6, 11–16.PubMedGoogle Scholar
  20. Gasser, S. M., Laemmli, U. K., 1986: Cohabitation of scaffold binding regions with upstream enhancer elements of three developmentally regulated genes of Dro-sophila melanogaster. Cell 46, 521–530.PubMedCrossRefGoogle Scholar
  21. Gasser, S. M., Laemmli, U. K., 1987: A glimpse at chromosomal order. Trends Genet. 3, 16–22.CrossRefGoogle Scholar
  22. Glaczinski, H., Kloppstech, K., 1987: Heat induced alterations in the properties of thylakoid membranes. Europ. J. Cell Biol. 43, 19.Google Scholar
  23. Grandbastien, M. A., Berry-Lowe, S., Shirley, B. W., Meagher, R. B., 1986: Two soybean ribulose-1,5-bisphosphate carboxylase small subunit genes share extensive homology even in the distant flanking sequences. Pl. Molec. Biol. 7, 451–465.CrossRefGoogle Scholar
  24. Guedon, G. F., Gilson, G. J. P., Ebel, J. P., Befort, N. M. T., Remy, P. M., 1986: Lack of correlation between extensive accumulation of bisnucleoside phosphates and the heat shock response in eukaryotic cells. J. Biol. Chem. 261, 16459–16465.PubMedGoogle Scholar
  25. Gurley, W. B., Hepburn, A. G., Key, J. L., 1979: Sequence organization of the soybean genome. Biochim. Biophys. Acta 561, 167–183.PubMedGoogle Scholar
  26. Gurley, W. B., Czarnecka, E., Nagao, R. T., Key, J. L., 1986: Upstream sequences required for efficient expression of a soybean heat shock gene. Molec. Cell. Biol. 6, 559–565.PubMedGoogle Scholar
  27. Hickey, E., Brandon, S. E., Potter, R., Stein, J., Weber, L. A., 1986: Sequence and organization of genes encoding the human hsp27 kDa heat shock protein. Nucl. Acids Res. 14, 4127–4145.PubMedCrossRefGoogle Scholar
  28. Hoffman, E. P., Gerring, S. L., Corces, V. G., 1987: The ovarian, ecdysterone and heat shock responsive promoters of Drosophila hsp27 gene react very differently to perturbations of DNA sequence. Molec. Cell. Biol. 7, 973–981.PubMedGoogle Scholar
  29. Hultmark, D., Klemenz, R., Gehring, W. J., 1986: Translational and transcriptional control elements in the untranslated leader of the heat shock gene hsp22. Cell 44, 429–438.PubMedCrossRefGoogle Scholar
  30. Ingolia, T. D., Craig, E. A., 1982: Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc. Natl. Acad. Sci. U.S.A. 79, 2360–2364.PubMedCrossRefGoogle Scholar
  31. Jackson, D. A., 1986: Organization beyond the gene. Trends Biochem. Sci. 11, 249–252.CrossRefGoogle Scholar
  32. Jones, D., Russnak, R. H., Kay, R. J., Candido, E. P. M., 1986: Structure, expression and evolution of the heat shock gene locus in Caenorhabditis elegans that is flanked by repetitive elements. J. Biol. Chem. 261, 12006–12015.PubMedGoogle Scholar
  33. Kalish, F., Cannon, C., Brunke, K., 1986: Characterization of a putative hsp81 gene in Brassica oleracea which is both constitutive and inducible. J. Cell. Biol. 103, 176a.Google Scholar
  34. Karin, M., Haslinger, A., Holtgreve, H., Richards, R. I., Krauter, P., Westphal, H. M., Beats, M., 1984: Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein IIa gene. Nature (Lond.) 308, 513–519.CrossRefGoogle Scholar
  35. Kee, S. C., Nobel, P. S., 1986: Concomitant changes in high temperature tolerance and heat shock proteins in desert succulents. Pl. Physiol. 80, 596–598.CrossRefGoogle Scholar
  36. Key, J. L., Czarnecka, E., Lin, C.-Y., Kimpel, J., Mothershed, C., Schöffl, F., 1983: A comparative analysis of the heat shock response in crop plants. In: Current topics in plant biochemistry and physiology. Vol. 2, pp. 107–118. Randall, D. D., Blevins, D. G., Larson, R. L., Rapp, B. J. (eds.). Columbia, Missouri. University of Missouri-Columbia.Google Scholar
  37. Key, J. L., Gurley, W. B., Nagao, R. T., Czarnecka, E., Mansfield, M. A., 1985: Multigene families of soybean heat shock proteins. Vol. 83, pp. 81–100. Van Vloten-Doting, L., Groot, G., Hall, T. C. (eds.). Plenum Press, New York.Google Scholar
  38. Kimpel, J. A., Key, J. L., 1985: Presence of heat shock mRNAs in field grown soybeans. Pl. Physiol. 79, 672–678.CrossRefGoogle Scholar
  39. Kleinsek, D. A., Beattie, W. G., Tsai, M. J., O’Malley, B. W., 1986: Molecular cloning of a steroid-regulated 108 K heat shock protein gene from hen oviduct. Nucl. Acids Res. 14, 10053–10069.PubMedCrossRefGoogle Scholar
  40. Klemenz, R., Hultmark, D., Gehring, W. J., 1985: Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J. 4, 2053–2060.PubMedGoogle Scholar
  41. Kloppstech, K., Meyer, G., Schuster, G., Ohad, I., 1985: Synthesis, transport and localization of a nuclear coded 22 kDa heat shock protein in the chloroplast membranes of peas and Chlamydomonas reinhardii. EMBO J. 4, 1901–1909.PubMedGoogle Scholar
  42. Koo, H. S., Wu, H. M., Crothers, D. M., 1986: DNA bending at adenine/thymine tracts. Nature (Lond.) 320, 501–506.CrossRefGoogle Scholar
  43. Koyasu, S., Nishida, E., Kadowaki, T., Matsuzaki, F., Iida, K., Harada, F., Kasuga, M., Sakai, H., Yahara, I., 1986: Two mammalian heat shock proteins, HSP90 and HSP100, are actin binding proteins. Proc. Natl. Acad. Sci. U.S.A. 83, 8054–8058.PubMedCrossRefGoogle Scholar
  44. Lee, J. S., Verma, D. P. S., 1984: Structural and chromosomal arrangement of leg-haemoglabin genes in kidney bean suggest divergence in soybean leghaemo-globin gene loci following tetraploidization. EMBO J. 3, 2745–2752.PubMedGoogle Scholar
  45. Lin, C.-Y., Roberts, J. R., Key, J. L., 1984: Acquisition of thermotolerance in soybean seedlings. Pl. Physiol. 74, 152–160.CrossRefGoogle Scholar
  46. Lindquist, S., 1986: The heat shock response. Ann. Rev. Biochem. 55, 1151–1191.PubMedCrossRefGoogle Scholar
  47. Lubben, T. H., Keegstra, K., 1986: Effective in vitro import of a cytosolic heat shock protein into pea chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 83, 5502–5506.PubMedCrossRefGoogle Scholar
  48. McClellan, J. A., Palecek, E., Lilley, M. J., 1986: (AT)n tracts embedded in random sequence DNA — formation of a structure which is chemically reactive and torsionally deformable. Nucl. Acids Res. 14, 9291–9309.PubMedCrossRefGoogle Scholar
  49. McGarry, T. J., Lindquist, S., 1985: The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42, 903–911.PubMedCrossRefGoogle Scholar
  50. Mestril, R., Schiller, P., Amin, J., Klapper, H., Anathan J., Voellmy, R., 1986: Heat shock and ecdysterone activation of the Drosophila melanogaster hsp23 gene; a sequence element implied in developmental regulation. EMBO J. 5, 1667–1673.PubMedGoogle Scholar
  51. Munro, S., Pelham, H., 1985: What turns on heat shock genes? Nature (Lond.) 317, 477–478.CrossRefGoogle Scholar
  52. Nagao, R. T., Czarnecka, E., Gurley, W. B., Schöffl, F., Key, J. L., 1985: Genes for low molecular weight heat shock proteins of soybean: sequence analysis of a multigene family. Molec. Cell. Biol. 5, 3417–3428.PubMedGoogle Scholar
  53. Nagao, R. T., Kimpel, J. A., Vierling, E., Key, J. L., 1986: The heat shock response: A comparative analysis. In: Oxford Surveys of Plant Molecular and Cell Biology. Vol.3, pp. 384–438. Miflin, B. J. (ed.). Oxford University Press, Oxford, U.K.Google Scholar
  54. Nover, L., Hellmund, D., Neumann, D., Scharf, K.-D., Serfling, E., 1984: The heat shock response of eukaryotic cells. Biol. Zbl. 103, 357–435.Google Scholar
  55. Nover, L., 1987: Expression of heat shock genes in homologous and heterologous systems. Enzyme Microb. Technol. 9, 130–144.CrossRefGoogle Scholar
  56. Oppermann, H., Levinson, W., Bishop, J. M., 1981: A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat shock protein. Proc. Natl. Acad. Sci. U.S.A. 78, 1067–1071.PubMedCrossRefGoogle Scholar
  57. Ougham, H. J., Stoddart, J. L., 1986: Synthesis of heat shock protein and acquisition of thermotolerance in high-temperature tolerant and high-temperature susceptible lines of sorghum. Plant Sci. 44, 163–167.CrossRefGoogle Scholar
  58. Pelham, H., 1985: Activation of heat shock genes in eukaryotes. Trends Genet. 1, 31–35.CrossRefGoogle Scholar
  59. Pelham, H., 1986: Speculation on the function of the major heat shock and glucose regulated proteins. Cell 46, 959–961PubMedCrossRefGoogle Scholar
  60. Pelham, H. R. B., Bienz, M., 1982: A synthetic heat shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1, 1473–1477.PubMedGoogle Scholar
  61. Raschke, E., 1987: Molekulare Analyse verschiedener Gene für kleine Hitzeschockproteine der Sojabohne (Glycine max [L.] Merrill). Dissertation, Universität Bielefeld, F.R.G.Google Scholar
  62. Raschke, E., Baumann, G., Schöffl, F., 1988: Nucleotide sequence analysis of soybean small heat shock protein genes belonging to two different multigene families. J. Mol. Biol. 199, 549–557.PubMedCrossRefGoogle Scholar
  63. Roberts, J. K., Key, J. L., 1985: Characterization of the genes for the heat shock 70 kD and 80 kD proteins in soybean. First International Congress of Plant Molecular Biology, Savannah, GA, p. 137.Google Scholar
  64. Rochester, D. E., Winter, J. A., Shah, D. M., 1986: The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J. 5, 451–458.PubMedGoogle Scholar
  65. Sachs, M., Ho, T. H., 1986: Alteration of gene expression during environmental stress in plants. Ann. Rev. Plant Physiol. 37, 363–376.CrossRefGoogle Scholar
  66. Sargan, D. R., Tsai, M. J., O’Malley, B. W., 1986: Hsp108, a novel heat shock inducible protein of chicken. Biochem. 25, 6252–6258.CrossRefGoogle Scholar
  67. Schlesinger, M. J., 1986: Heat shock proteins: the search for function. J. Cell Biol. 103, 321–325.PubMedCrossRefGoogle Scholar
  68. Schlesinger, M. J., Ashburner, M., Tissières, A., 1982: Heat shock from bacteria to man. Cold Spring Harbor Laboratory, NY.Google Scholar
  69. Schöffl, F., Baumann, G., 1985: Thermoinduced transcripts of a soybean heat shock gene after transfer into sunflower using a Ti plasmid vector. EMBO J. 4, 1119–1124.PubMedGoogle Scholar
  70. Schöffl, F., Raschke, E., Nagao, R. T., 1984: The DNA sequence analysis of soybean heat shock genes and identification of possible regulatory elements. EMBO J. 3, 2491–2497.PubMedGoogle Scholar
  71. Schöffl, F., Baumann, G., Raschke, E., Bevan, M., 1986: The expression of heat shock genes in higher plants. Phil. Trans. R. Soc. Lond. B314, 453–468.Google Scholar
  72. Schöffl, F., Rossol, I., Angermüller, S., 1987: Regulation of the transcription of heat shock genes in nuclei from soybean (Glycine max) seedlings. Plant Cell Envir. 10, 113–119.Google Scholar
  73. Singh, R. J., Hymowitz, T., 1985: The genomic relationship among six wild perennial species of the genus Glycine subgenus Glycine willd. Theor. Appl. Genet. 71, 221–230.Google Scholar
  74. Sinibaldi, R. M., Turpen, T., 1985: A heat shock protein is encoded within mitochondria of higher plants. J. Biol. Chem. 260, 15382–15385.PubMedGoogle Scholar
  75. Southgate, R., Ayme, A., Voellmy, R., 1983: Nucleotide sequence analysis of the Drosophila small heat shock gene cluster 67 B. J. Mol. Biol. 165, 35–57.PubMedCrossRefGoogle Scholar
  76. Spena, A., Hain, R., Ziervogel, U., Saedler, H., Schell, J., 1985: Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO J. 4, 2739–2743.PubMedGoogle Scholar
  77. Spena, A., Schell, J., 1987: The expression of a heat-inducible chimeric gene in transgenic tobacco plants. Mol. Gen. Genet. 206, 436–440.CrossRefGoogle Scholar
  78. Strittmatter, G., Chua, N.-H., 1987: Artificial combination of two cis regulatory elements generates a unique pattern of expression in transgenic plants. Proc. Natl. Acad. Sci. U.S.A. 84, 8986–8990.PubMedCrossRefGoogle Scholar
  79. Struhl, K., 1985: Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl. Acad. Sci. U.S.A. 82, 8419–8423.PubMedCrossRefGoogle Scholar
  80. Suggs, J. W., Wagner, R. W., 1986: Nuclease recognition of an alternating structure in d(AT)14 plasmid insert. Nucl. Acids Res. 14, 3703–3716.PubMedCrossRefGoogle Scholar
  81. Süss, K.-H., Yordanov, I. T., 1986: Biosynthetic cause of in vivo acquired thermo-tolerance of photosynthetic light reactions and metabolic responses of chloroplast to heat stress. Pl. Physiol. 81, 192–199.CrossRefGoogle Scholar
  82. van den Heuvel, R., Hendriks, W., Quax, W., Bloemendahl, H., 1985: Complete structure of the hamster α A crystallin gene. J. Mol. Biol. 185, 273–284.PubMedCrossRefGoogle Scholar
  83. Vierling, E., Mishkin, M. L., Schmidt, G. W., Key, J. L., 1986: Specific heat shock proteins are transported into chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 83, 361–365.PubMedCrossRefGoogle Scholar
  84. Vierling, E., Chen, Q., 1987a: Characterization and expression of chloroplast heat shock proteins in pea and petunia (in press).Google Scholar
  85. Vierling, E., Roberts, J. K., Nagao, R. T., Key, J. L., 1987 b: A chloroplast heat shock protein has homology to cytoplasmic heat shock proteins (in press).Google Scholar
  86. Wright, J. M., Dixon, G. H., 1986: Induction by torsional stress of a cruciform conformation 5′ upstream of the gene for a high mobility group protein from trout and the specific binding to flanking sequences by the gene product. J. Cell Biol. 103, 43a.Google Scholar
  87. Wu, B. J., Morimoto, R. I., 1985: Transcription of the human hsp70 gene is induced by serum stimulation. Proc. Natl. Acad. Sci. U.S.A. 82, 6070–6074.PubMedCrossRefGoogle Scholar
  88. Xiao, C.-M., Mascarenhas, J. P., 1985: High temperature-induced thermotolerance in pollen tubes of Tradescantia and heat shock proteins. Pl. Physiol. 78, 887–890.CrossRefGoogle Scholar
  89. Yost, A. J., Lindquist, S., 1986: RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45, 185–193.PubMedCrossRefGoogle Scholar
  90. Zhang, H., Croes, A. F., Liskens, H. F., 1984: Qualitative changes in protein synthesis in germinating pollen in Lilium longiflorum after a heat shock. Pl. Cell Envir. 7, 689–691.Google Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Fritz Schöffl
    • 1
  • Götz Baumann
    • 1
  • Eberhard Raschke
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldGenetikGermany

Personalised recommendations