Advertisement

Arabidopsis as a Tool for the Identification of Genes Involved in Plant Development

  • Ruth Finkelstein
  • Mark Estelle
  • Jose Martinez-Zapater
  • Chris Somerville
Part of the Plant Gene Research book series (GENE)

Abstract

The sessile lifestyle of plants requires that they be able to alter their growth in order to adapt to environmental changes. Much research has been devoted to determining how plants perceive and respond to environmental cues such as light intensity and quality, photoperiod, gravity, water stress, and temperature. In the case of light-regulated phenomena, various photoreceptors have been identified whose absorption maxima coincide with regions of the action spectra of the observed phenomena. However, the transduction pathways from perception to cellular response have not been elucidated. Similarly, much correlative evidence suggests that phytohormones are involved in transducing environmental signals into biochemical or morphological effects. In this case neither the elements linking the environmental effects with changes in hormone levels or sensitivity nor those mediating the hormonally induced responses have been identified. Furthermore it is not known whether the correlations between environmental or hormonal signals and the observed responses reflect a causal, direct relationship or if they represent parallel or overlapping paths toward the same result.

Keywords

Arabidopsis Thaliana Abscisic Acid Seed Dormancy Apical Dominance Wild Type Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerson, R. C., 1984: Abscisic acid and precocious germination in soybeans. J. Exp. Bot. 35, 414–421.CrossRefGoogle Scholar
  2. Addicott, F. T., Lyon, J. L., Ohkuma, K., Thiessen, W. E., Cams, H. R., Smith, O. E., Cornforth, J. W., Milborrow, B. V., Ryback, G., Wareing, P. F., 1968: Abscisic acid: a new name for abscisin II (dormin). Science 159, 1493.PubMedCrossRefGoogle Scholar
  3. Anderson, L. W. J., 1978: Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potomageton nodosus. Science 201, 1135–1138.PubMedCrossRefGoogle Scholar
  4. Baker, B., Schell, J., Lorz, H., Federoff, N., 1986: Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. U.S.A. 83, 4844–4848.PubMedCrossRefGoogle Scholar
  5. Bandurski, R. S., Galston, A. W., 1951: Phototropic sensitivity of coleoptile of albino corn. Maize Genet. Coop. Newsletter 25, 5.Google Scholar
  6. Bender, W., Spierer, P., Hogness, D. S., 1983: Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Droso-phila melanogaster. J. Mol. Biol. 168, 17–34.PubMedCrossRefGoogle Scholar
  7. Bernier, G., Kinet, J.-M., Sachs, R. M., 1981: The physiology of flowering. Vol. 1, 149pp. Boca Raton, Fla.: CRC Press.Google Scholar
  8. Bingham P. M., Levis, R., Rubin, G. M., 1981: Cloning of DNA sequence from the white locus of Drosophila melanogaster by a novel and general method. Cell 25, 693–704.PubMedCrossRefGoogle Scholar
  9. Black, M., 1983: Abscisic acid in seed germination and dormancy. In: Abscisic Acid. Addicott, F. T. (ed.), New York: Praeger Publishers.Google Scholar
  10. Blakely, L. M., Radaway, S. J., Hollen, L. B., Croker, S. G., 1972: Control and kinetics of branch root formation in cultured root segments of Haplopappus ravenii. Plant Physiol. 50, 35–42.PubMedCrossRefGoogle Scholar
  11. Bleeker, A. B., Estelle, M., Somerville, C. R., Kende, H., 1987: Characterization of an ethylene-resistant mutant in Arabidopsis thaliana. Third International Meeting on Arabidopsis, Abstract # 77.Google Scholar
  12. Bonner, J. J., Parks, C., Parker-Thornburg, J., Mortin, M. A., Pelham, H. R. B., 1984: The use of promoter fusions in Drosophila genetics: Isolation of mutations affecting the heat shock response. Cell 37, 979–992.PubMedCrossRefGoogle Scholar
  13. Borthwick, M. A., Hendricks, S. B., Parker, M. W., 1952: The reaction controlling floral initiation. Proc. Natl. Acad. Sci. U.S.A. 38, 924–934.Google Scholar
  14. Bray, E. A., Zeevaart, J. A. D., 1986: Compartmentation and equilibration of abscisic acid in isolated Xanthium cells. Plant Physiol. 80, 105–109.PubMedCrossRefGoogle Scholar
  15. Brenner, M. L., Burr, B., Burr, F., 1977: Correlation of genetic vivipary in corn with abscisic acid concentration. Plant Physiol. Suppl. 59, 76.Google Scholar
  16. Brian, P. W., Elson, G. W., Hemming, H. G., Radley, M., 1954: The plant-growth promoting properties of gibberellic acid, a metabolic product of the fungus Gibberella fujikoroi. J. Sci. Food Agr. 5, 602–612.CrossRefGoogle Scholar
  17. Brown, J. A. M., Klein, W. H., 1971: Photomorphogenesis in Arabidopsis thaliana. Plant Physiol. 47, 393–399.PubMedCrossRefGoogle Scholar
  18. Bullen, B., Poff, K. L., 1987: Physiological characterization of mutants of Arabidopsis with altered geotropism. Third International Meeting on Arabidopsis, Abstract # 149.Google Scholar
  19. Caspar, T., Somerville, C., 1985: Geotropic roots and shoots of a starch-free mutant of Arabidopsis. Plant Physiol. 77S, 105.Google Scholar
  20. Chailakhyan, M. K., 1936: New facts in support of the hormonal theory of plant development. Dokl. Acad. Sci. U.S.S.R. 13, 79–83.Google Scholar
  21. Chang, C., DeJohn, A. W., Pruitt, R. E., Meyerowitz, E. M., 1987: A restriction fragment length polymorphism map of the Arabidopsis genome. Third International Meeting on Arabidopsis, Abstract #31.Google Scholar
  22. Chen, T. H. H., Gusta, L. V., 1983: Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol. 73, 71–75.PubMedCrossRefGoogle Scholar
  23. Cheng, T.-Y., 1972: Induction of indoleacetic acid synthesis in tobacco pith expiants. Plant Physiol. 50, 723–727.PubMedCrossRefGoogle Scholar
  24. Chory, J., Ausubel, F., 1987: Genetic analysis of photoreceptor action pathways. Third International Meeting on Arabidopsis. Abstract # 56.Google Scholar
  25. Cone, J. W., Kendrick, R. E., 1985: Fluence-response curves and action spectra for promotion and inhibition of seed germination in wild type and long-hypocotyl mutants of Arabidopsis thaliana (L.). Planta 163, 43–54.CrossRefGoogle Scholar
  26. Creelman, R. A., Gage, D. A., Stults, J. T., Zeevaart, J. A. D., 1987: Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium. Plant Physiol., in press.Google Scholar
  27. Curry, G. M., Gruen, H. E., 1959: Action spectra for the positive and negative phototropism of Phycomyces sporangiophores. Proc. Natl. Acad. Sci. U.S. A. 45, 797–804.PubMedCrossRefGoogle Scholar
  28. Darwin, C., 1881: The Power of Movement in Plants. New York: D. Appleton and Co.Google Scholar
  29. Davies, W. J., Mansfield, T. A., 1983: The role of abscisic acid in drought avoidance. In: Abscisic Acid, Addicott, F. T. (ed.), New York: Praeger Publishers.Google Scholar
  30. Delbruck, M., Katzir, A., Presti, D., 1976: Responses of Phycomyces indicating optical excitation of the lowest triplet state of riboflavin. Proc. Natl. Acad. Sci. U.S.A. 73, 1969–1973.PubMedCrossRefGoogle Scholar
  31. Estelle, M. A., Somerville, C. R., 1987: Auxin resistant mutants of Arabidopsis thaliana with an altered morphology. Mol. Gen. Genet. 206, 200–206.CrossRefGoogle Scholar
  32. Evans, L. T., 1971: Flower induction and the florigen concept. Ann. Rev. Plant Physiol. 22, 365–394.CrossRefGoogle Scholar
  33. Federoff, N. V., Furtek, D. B., Nelson, O. E., Jr., 1984: Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl. Acad. Sci. U.S.A. 81, 3825–3829.CrossRefGoogle Scholar
  34. Firn, R. D., Digby, J., 1980: The establishment of tropic curvatures in plants, Annu. Rev. Plant Physiol. 31, 131–148.CrossRefGoogle Scholar
  35. Funke, G. L., 1948: The photoperiodicity of flowering under short day with supplemental light of different wavelengths. In: Vernalization and photoperiodism. Vol.1, pp. 79–82. Murneek, A. E., Whyte, R. O. (eds.). Waltham, Mass.: Lotsya.Google Scholar
  36. Galland, P., Lipson, E. D., 1985: Action spectra for phototropic balance in Phycomyces blakesleeanus: Dependence on reference wavelength and intensity range. Photochem. Photobiol. 41, 323–329.PubMedCrossRefGoogle Scholar
  37. Hauge, B., Fritze, C., Nam, H.-G., Paek, K.-H., Goodman, H. M., 1987: Progress in constructing a physical map of the Arabidopsis thaliana genome. Third International Meeting on Arabidopsis, Abstract # 32.Google Scholar
  38. Haughn, G. W., Somerville, C. R., 1987: Genetic control of morphogenesis in Arabidopsis. Dev. Genet., in press.Google Scholar
  39. Henikoff, S., Tatchell, K., Hall, B. D., Nasmyth, K. A., 1981: Isolation of a gene from Drosophila by complementation in yeast. Nature 289, 33–37.PubMedCrossRefGoogle Scholar
  40. Hussein, H. A. S., 1968: Genetic analysis of mutagen-induced flowering time variation in Arabidopsis thaliana (L.) Heynh. 88 pp. Thesis, Wageningen, The Netherlands.Google Scholar
  41. Hussein, H. A. S., van der Veen, J. H., 1965: Induced mutations for flowering time. Arabidopsis Inf. Serv. 2, 6–8.Google Scholar
  42. Hussein, H. A. S., van der Veen, J. H., 1968: Genotypic analysis of induced mutations for flowering time and leaf number in Arabidopsis thaliana. Arabidopsis Inf. Serv. 5, 30.Google Scholar
  43. Jablonski, J. R., Skoog, F., 1954: Cell enlargement and cell division in excised tobacco pith tissue. Physiol. Plant 7, 16–24.CrossRefGoogle Scholar
  44. Jacobs, M., Ray, P., 1976: Rapid auxin-induced decrease in free space pH and its relationship to auxin-induced growth in maize and pea. Plant Physiol. 58, 203–209.PubMedCrossRefGoogle Scholar
  45. Jones, R. L., 1973: Gibberellins: Their physiological role. Ann. Rev. Plant Physiol. 24, 571–598.CrossRefGoogle Scholar
  46. Karssen, C. M., Brinkhorst-van der Swan, D. L. C., Breekland, A. E., Koornneef, M., 1983: Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158–165.CrossRefGoogle Scholar
  47. Karssen, C. M., Lacka, E., 1985: A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. In: Plant Growth Substances, pp. 315–323, Bopp, M. (ed.). Berlin: Springer-Verlag.Google Scholar
  48. Kaufman, T. C., Abbott, M. K., 1984: Homoeotic genes and the specification of segmental identity in the embryo and adult thorax of Drosophila melanogaster. In: Molecular Aspects of Early Development, pp. 182–218. Malacinski, G. M., Klein, W. H. (eds.). New York: Plenum Press.Google Scholar
  49. Kelly, M. O., Bradford, K. J., 1986: Insensitivity of the Diageotropica tomato mutant to auxin. Plant Physiol. 82, 713–717.PubMedCrossRefGoogle Scholar
  50. Koornneef, M., Rolff, E., Spruit, C. J. P., 1980: Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzen-physiol. 100, 147–160.Google Scholar
  51. Koornneef, M., van der Veen, J. H., 1980: Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58, 257–263.CrossRefGoogle Scholar
  52. Koornneef, M., Dellaert, L. W. M., van der Veen, J. H., 1982: EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutation Res. 93, 109–123.PubMedCrossRefGoogle Scholar
  53. Koornneef, M., Jorna, M. L., Brinkhorst van der Swan, D. L. C., Karssen, C. M., 1982: The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 61, 385–393.Google Scholar
  54. Koornneef, M., van Eden, J., Hanhart, C. J., Stam, P., Braaksma, F. J., Feenstra, W. J., 1983: Linkage map of Arabidopsis thaliana. J. of Hered. 74, 265–272.Google Scholar
  55. Koornneef, M., Reuling, G., Karssen, C. M., 1984: The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61, 377–383.CrossRefGoogle Scholar
  56. Koornneef, M., Elgersma, A., Hanhart, C. J., van Loenen-Martinet, E. P., van Rijn, L., Zeevaart, J. A. D., 1985: A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol. Plant 65, 33–39.CrossRefGoogle Scholar
  57. Kranz, A. R., 1981: Genphysiologie lichtinduzierter Entwicklungsprozesse bei Arabidopsis thaliana (L.) Heynh. Ber. Dtsch. Bot. Ges. 94, 181.Google Scholar
  58. Kurosawa, E., 1926: Experimental studies on the secretion of Fusarium hetero-sporum on rice plants. Trans. Natl. Hist. Soc. Formosa 16, 213–227.Google Scholar
  59. Lang, A., 1965: Physiology of flower initiation. In: Encyclopedia of plant physiology. Vol. 15–1, pp. 1380–1536. Ruhland, W. (ed.). Berlin: Springer-Verlag.Google Scholar
  60. Langridge, J., 1957: Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180, 36–37.CrossRefGoogle Scholar
  61. Leutwiler, L. S., Hough-Evans, B. R., Meyerowitz, E. M., 1984: The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194, 15–23.CrossRefGoogle Scholar
  62. Ludwig, B., Stein, P., Olszewski, N., Ausubel, F., 1987: Construction of a plant-transformable Arabidopsis thaliana genomic library in Agrobacterium. Third International Meeting on Arabidopsis, Abstract #47.Google Scholar
  63. Maher, E. P., Martindale, S. J. B., 1980: Mutants of Arabidopsis thaliana with altered response to auxin and gravity. Biochem. Genet. 18, 1041–1053.PubMedCrossRefGoogle Scholar
  64. Malmberg, R. L., McIndoo, J., 1983: Abnormal floral development of tobacco mutant with elevated polyamine levels. Nature 305, 623–625.CrossRefGoogle Scholar
  65. Martinez-Zapater, J. M., Somerville, S., Somerville, C. R., 1987: Variegated mutants of Arabidopsis. Third International Meeting on Arabidopsis, Abstract # 107.Google Scholar
  66. McKelvie, A. D., 1962: A list of mutant genes in Arabidopsis thaliana (L.) Heynh. Radiat. Bot. 1, 233–241.CrossRefGoogle Scholar
  67. Meijer, G., 1959: The spectral dependence of flowering and elongation. Acta Bot. Neerl. 8, 189.Google Scholar
  68. Melchers, G., 1939: Die Bluhhormone. Ber. Dtsch. Bot. Ges. 57, 29–48.Google Scholar
  69. Mertens, R., Weiler, E. W., 1983: Kinetic studies on the redistribution of endogenous growth regulators in gravireacting plant organs. Planta 158 339–345.CrossRefGoogle Scholar
  70. Moore, R., Smith, J. D., 1984: Growth, graviresponsiveness and abscisic-acid content of Zea mays seedlings treated with fluridone. Planta 162, 342–344.PubMedCrossRefGoogle Scholar
  71. Mossie, K. G., Meyerowitz, E., 1987: In search of transposable genetic elements in Arabidopsis thaliana. Third International Meeting on Arabidopsis, Abstract #41.Google Scholar
  72. Murfet, I. C., 1977: Environmental interaction and the genetics of flowering. Ann. Rev. Plant Physiol. 28, 253–278.CrossRefGoogle Scholar
  73. Napp-Zinn, K., 1969: Arabidopsis thaliana (L.) Heynh. In: The induction of flowering: some case hostories. pp. 291–304. Evans, L. T. (ed.). Melbourne: Macmillan.Google Scholar
  74. Napp-Zinn, K., 1985: Arabidopsis thaliana. In: Handbook of flowering. Vol.1, pp. 492–503. Halevy, A. H. (ed). Boca Raton, Fla.: CRC Press.Google Scholar
  75. Olszewski, N., Ausubel, F., 1987: A potential vector for the cloning of plant genes by phenotypic complementation. Third International Meeting on Arabidopsis, Abstract #45.Google Scholar
  76. Pang, P., Meyerowitz, E., 1987: Seed specific gene expression in Arabidopsis thaliana. Third International Meeting on Arabidopsis, Abstract # 53.Google Scholar
  77. Phillips, I. D., 1975: Apical dominance. Ann. Rev. Plant Physiol. 26, 341–367.CrossRefGoogle Scholar
  78. Phinney, B. O., 1984: Gibberellin A1, dwarfism and the control of shoot elongation in higher plants. In: The Biosynthesis and Metabolism of Plant Hormones, pp. 17–42. Crozier, A., Hillman, J. R. (eds.). Cambridge University Press.Google Scholar
  79. Pickard, B., 1985: Roles of hormones, protons and Ca++ in geotropism. In: Hormonal Regulation of Development III, Encyclopedia of Plant Physiol., New Series, vol.11, pp. 193–281. Pharis, R. P., Reid, D. M. (eds.). Berlin: Springer-Verlag.Google Scholar
  80. Poethig, R. S., 1985: Homeotic mutations in maize. In: Plant Genetics, pp. 33–44. Freeling, M. (ed.). New York: Alan R. Liss, Inc.Google Scholar
  81. Poff, K. L., Best, T., Gregg, M., Ren, Z., 1987: Mutants of Arabidopsis thaliana with altered phototropism and/or altered geotropism. Third International Meeting on Arabidopsis, Abstract # 79.Google Scholar
  82. Presti, D., Hsu, W. J., Delbruck, M., 1977: Phototropism in Phycomyces mutants lacking β-carotene. Photochem. Photobiol. 26, 403–405.CrossRefGoogle Scholar
  83. Radley, M., 1956: Occurrence of substances similar to gibberellic acid in higher plants. Nature (London) 178, 1070–1071.CrossRefGoogle Scholar
  84. Redei, G. P., 1962: Supervital mutants of Arabidopsis. Genetics 47, 443–460.PubMedGoogle Scholar
  85. Redei, G. P., Acedo, G., Gavazzi, G., 1974: Flower differentiation in Arabidopsis. Stadler Symp. 6, 135–168.Google Scholar
  86. Robichaud, C. S., Wong, J., Sussex, I. M., 1980: Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev. Genet. 1, 325–330.CrossRefGoogle Scholar
  87. Rogler, C. E., Hackett, W. P., 1974: Phase change in Hedera helix: stabilization of the mature form with abscisic acid and growth retardants. Physiol. Plant. 34, 148–152.CrossRefGoogle Scholar
  88. Schnieke, A., Harbers, K., Jaenisch, R., 1983: Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene. Nature 304, 315–320.PubMedCrossRefGoogle Scholar
  89. Schwabe, W. W., 1954: The site of vernalization and translocation of the stimulus. J. Exp. Bot. 5, 389–400.CrossRefGoogle Scholar
  90. Shen-Miller, J., 1973: Rhythmic differences in the basipetal movement of indole-acetic acid between separated upper and lower halves of geotropically stimulated corn coleoptiles. Plant Physiol. 52, 166–170.PubMedCrossRefGoogle Scholar
  91. Sponsel, V., 1987: Gibberellin biosynthesis and metabolism. In: Plant Hormones and Their Role in Plant Growth and Development. Davies, P. J. (ed.), pp. 43–75. Dordrecht: Martinus Nijhoff Publishers.Google Scholar
  92. Spruit, C. J. P., van der Boom, A., Koornneef, M., 1980: Light induced germination and phytochrome content of seeds of some mutants of Arabidopsis. Arabidopsis Inf. Service 17, 137–141.Google Scholar
  93. Stodola, F. H., Raper, K. B., Fennell, D. I., Conway, H. F., Sohns, V. E., Langford, C. T., Jackson, R. W., 1955: The microbiological production of gibberellins A and X. Arch. Biochem. Biophys. 54, 240–245.PubMedCrossRefGoogle Scholar
  94. Tagliana, L., Nissen, S., Blake, T. K., 1986: Comparison of growth, exogenous auxin sensitivity, and endogenous indole-3-acetic acid content in roots of Horduem vulgare L. and an agravitropic mutant. Biochem. Genet. 24, 839–848.CrossRefGoogle Scholar
  95. Taylorson, R. B., Hendricks, S. B., 1977: Dormancy in seeds. Ann. Rev. Plant Physiol. 28, 331–354.CrossRefGoogle Scholar
  96. Trewavas, A., 1981: How do plant growth substances work? Plant Cell Envir. 4, 203–228.Google Scholar
  97. Van Stevenick, R. F. M., Van Stevenick, M. E., 1983: Abscisic acid and membrane transport. In: Abscisic Acid. Addicott, F. T. (ed.), pp. 171–236. New York: Praeger Publishers.Google Scholar
  98. Vetrilova, M., 1973: Genetic and physiological analysis of induced late mutants of Arabidopsis thaliana (L.) Heynh. Biol. Plant. 15, 391–397.CrossRefGoogle Scholar
  99. Vierstra, R. D., Poff, K. L., 1981: Role of carotenoids in the phototropic response of corn seedlings. Plant Physiol. 68, 798–801.PubMedCrossRefGoogle Scholar
  100. Volkmann, D., Sievers, A., 1979: Graviperception in multicellular organs. In: Physiology of Movements. Encyclopedia of Plant Physiol., new series, vol. 7, Haupt, W., Feinleib, M. E. (eds.), pp. 573–600. Berlin: Springer-Verlag.Google Scholar
  101. Walbot, V., 1978: Control mechanisms for plant embryogeny. In: Dormancy and Developmental Arrest: Experimental Analysis in Plants and Animals. Clutter, M. E. (ed.), pp. 114–166. New York: Academic Press.Google Scholar
  102. Wareing, P. F., Phillips, I. D. J., 1983: Abscisic acid in bud dormancy and apical dominance. In: Abscisic Acid. Addicott, F. T. (ed.), pp. 301–330. New York: Praeger Publishers.Google Scholar
  103. Went, F. W., Thimann, K. V., 1937: Phytohormones. New York: Macmillan.Google Scholar
  104. West, C. A., Phinney, B. O., 1956: Properties of gibberellin-like factors from extracts of higher plants. Plant Physiol. 31 (Suppl.) XX (Abstr.).Google Scholar
  105. Yabuta, S. F., Sumiki, Y., 1938: Communication to the editor. J. Agric. Chem. Soc. Japan 14, 1526.Google Scholar
  106. Yang, S. F., Hoffmann, N. E., 1984: Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35, 155–189.CrossRefGoogle Scholar
  107. Zeevaart, J. A. D., 1976: Physiology of flower formation. Ann. Rev. Plant Physiol. 27, 321–348.CrossRefGoogle Scholar
  108. Zeevaart, J. A. D., 1983: Endogenous gibberellins in dwarf mutants of Arabidopsis thaliana. In: Plant Research’ 83, Annual Report of the MSU-DOE Plant Research Laboratory, pp. 157–158. East Lansing, Michigan.Google Scholar
  109. Zeevaart, J. A. D., 1986: Characterization of three dwarf mutants of Arabidopsis thaliana. In: Plant Research’ 86, Annual Report of the MSU-DOE Plant Research Laboratory, pp. 130–131. East Lansing, Michigan.Google Scholar
  110. Zhang, H., Somerville, C. R., 1987: Transfer of the maize transposable element mu 1 into Arabidopsis thaliana. Plant Sci. 48, 165–173.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Ruth Finkelstein
    • 1
  • Mark Estelle
    • 2
  • Jose Martinez-Zapater
    • 1
  • Chris Somerville
    • 1
  1. 1.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Biology Dept.Indiana UniversityBloomingtonUSA

Personalised recommendations