Skip to main content

A Data Structure for Representing and Efficient Querying Large Scenes of Geometric Objects: MB* Trees

  • Conference paper
Geometric Modelling

Part of the book series: Computing Supplementum ((COMPUTING,volume 8))

Abstract

We are concerned with the problem of partitioning complex scenes of geometric objects in order to support the solutions of proximity problems in general metric spaces with an efficiently computable distance function. We present a data structure called Monotone Bisector* Tree (MB* Tree), which can be regarded as a divisive hierarchical approach of centralized clustering methods (compare [3] and [10]). We analyze some structural properties showing that MB* Trees are a proper tool for a general representation of proximity information in complex scenes of geometric objects.

Given a scene of n objects in d-dimensional space and some Minkowski-metric. We additionally demand a general position of the objects and that the distance between a point and an object of the scene can be computed in constant time. We show that a MB* Tree with logarithmic height can be constructed in optimal O(n log n) time using O(n) space. This statement still holds if we demand that the cluster radii, which appear on a path from the root down to a leaf, should generate a geometrically decreasing sequence.

We report on extensive experimental results which show that MB* Trees support a large variety of proximity queries by a single data structure efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, J. L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18 (9), 509–517 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  2. Chew, L. P., Drysdale III, R. L.: Voronoi diagrams based on convex distance functions. 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, 1985.

    Google Scholar 

  3. Dehne, F., Noltemeier, H.: A computational geometry approach to clustering problems. Proceedings of the 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, 1985.

    Google Scholar 

  4. Edelsbrunner, H.: Algorithms in combinatorial geometry. Berlin, Heidelberg: Springer 1987 (EATCS Monographs in Computer Science, 10).

    Google Scholar 

  5. Günther, O.: Efficient structures for geometric data management. (ed. G. Goos, J. Hartmanis). Berlin, Heidelberg: Springer 1988 (LNCS 337).

    Google Scholar 

  6. Heusinger, H.: Clusterverfahren für Mengen geometrischer Objekte. Report, Universität Würzburg, 1989.

    Google Scholar 

  7. Kalantari, I., McDonald G.: A data structure and an algorithm for the nearest point problem. IEEE Transactions on Software Engineering SE-9 (5), 446–454 (1983).

    Article  Google Scholar 

  8. Megiddo, N.: Linear-time algorithms for linear programming in ℝ3 and related problems. SIAM Journal on Comput. 12, 759–776 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The Computer Journal 26 (4), 354–359 (1983).

    MATH  Google Scholar 

  10. Noltemeier, H.: Voronoi trees and applications. In: H. Imai (ed.) Discrete algorithms and complexity. ( Proceedings ), Fukuoka/Japan, 1989.

    Google Scholar 

  11. Noltemeier, H.: Layout of flexible manufacturing systems-selected problems. DIMACS—Workshop on Applications of Combinatorial Optimization in Science and Technology (COST), New Brunswick, New Jersey, 1991.

    Google Scholar 

  12. Preparata, F. P., Shamos, M. I.: Computational geometry—an introduction. New York: Springer 1985.

    Google Scholar 

  13. Samet, H.: The quadtree and related hierarchical data structures. ACM Computing Surveys 16, 187–260 (1984).

    Article  MathSciNet  Google Scholar 

  14. Willard, D. E.: Polygon retrieval. SIAM J. Comput. 11 (1), 149–165 (1982).

    Article  MathSciNet  Google Scholar 

  15. Zirkelbach, C.: Partitionierung mit Bisektoren. Techn. Report, Universität Würzburg, 1990.

    Google Scholar 

  16. Zirkelbach, C.: Monotone Bisektor* Bäume unter Minkowski-Metrik. Techn. Report, Universität Würzburg, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Noltemeier, H., Verbarg, K., Zirkelbach, C. (1993). A Data Structure for Representing and Efficient Querying Large Scenes of Geometric Objects: MB* Trees. In: Farin, G., Noltemeier, H., Hagen, H., Knödel, W. (eds) Geometric Modelling. Computing Supplementum, vol 8. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6916-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6916-2_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82399-6

  • Online ISBN: 978-3-7091-6916-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics