Advertisement

Transcranial Doppler in Neurosurgery

  • K.-F. Lindegaard
  • W. Sorteberg
  • H. Nornes
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 20)

Summary

This chapter describes the use of the transcranial Doppler apparatus in neurosurgery. The principles of Doppler insonation, the techniques of recording and the use of activation techniques is described. The relationship between blood flow and blood velocity is discussed, and the interaction of various pharmacological agents. The establishment of normal values for the laboratory and various vessels insonated is emphasised. The use of indices particularly the pulsatility index is described together with its variations. Cerebral vascular reactivity measurements and the interaction of Doppler recordings with raised intracranial pressure, useful in assessment of cerebral perfusion pressure as in head injury and in terminal cases, is documented.

The use of transcranial Doppler in management of head injury and subarachnoid haemorrhage is described. The latter is probably the most useful routine place for Doppler measurement in neurosurgical practice and the documentation of the onset and progress of vasospasm is the final portion of the chapter.

Keywords

Cerebral Artery Subarachnoid Haemorrhage Cerebral Perfusion Pressure Pulsatility Index Cerebral Vasospasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaslid R (1987) Visually evoked dynamic blood velocity response of the human cerebral circulation. Stroke 18: 771–775PubMedGoogle Scholar
  2. 2.
    Aaslid R, Brubakk OA (1981) Accuracy of an ultrasound Doppler servo method for non-invasive determination of instantaneous and mean arterial blood pressure. Circulation 64: 753–759PubMedGoogle Scholar
  3. 3.
    Aaslid R, Lindegaard K-F (1986) Cerebral haemodynamics. In: Aaslid R (ed) Transcranial Doppler sonography. Springer, Berlin Heidelberg New York Wien, pp 60–85Google Scholar
  4. 4.
    Aaslid R, Nornes H (1984) Musical murmurs from human basal cerebral arteries. J Neurosurg 60: 32–36PubMedGoogle Scholar
  5. 5.
    Aaslid R, Markwalder T-M, Nornes H (1982) Non-invasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57: 769–774PubMedGoogle Scholar
  6. 6.
    Aaslid R, Huber P, Nornes H (1984) Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 60: 37–41PubMedGoogle Scholar
  7. 7.
    Aaslid R, Huber P, Nornes H (1986a) A transcranial Doppler method in the evaluation of cerebrovascular spasm. Neuroradiology 28: 11–16PubMedGoogle Scholar
  8. 8.
    Aaslid R, Lundar T, Lindegaard K-F, Nornes H (1986b) Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds) Intracranial pressure VI. Springer, Berlin Tokyo New York Heidelberg, pp 226–229Google Scholar
  9. 9.
    Aaslid R, Lindegaard K-F, Sorteberg W, Nornes H (1989) Cerebral auto-regulation dynamics in humans. Stroke 20: 45–52PubMedGoogle Scholar
  10. 10.
    Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard K-F (1991) Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke 22: 1148–1154PubMedGoogle Scholar
  11. 11.
    Adams RJ, Nichols FT, Hess DC (1992) Normal values and physiological variables. In: Newell DW, Aaslid R (eds) Transcranial Doppler. Raven, New York, pp 41–48Google Scholar
  12. 12.
    Alexander SC, Wollman H, Cohen PJ, Chase PE, Behar M (1964) Cerebrovascular response to PaCO2 during halothane anesthesia in man. J Appl Physiol 19: 562–565Google Scholar
  13. 13.
    Bakay L, Sweet WH (1952) Cervical and intracranial pressures with and without vascular occlusion. Surg Gynecol Obstet 95: 67–75PubMedGoogle Scholar
  14. 14.
    Batjer HH, Purdy PD, Giller CA, Samson DS (1989) Evidence of redistribution of cerebral blood flow during treatment for an intracranial arteriovenous malformation. Neurosurgery 25: 599–605PubMedGoogle Scholar
  15. 15.
    Bode H, Wais U (1988) Age dependence of flow velocities in basal cerebral arteries. Arch Dis Child 63: 606–611PubMedGoogle Scholar
  16. 16.
    Brouwers PJAM, Wijdicks EFM, van Gijn J (1992) Infarction after aneurysm rupture does not depend on distribution or clearance rate of blood. Stroke 23: 374–379PubMedGoogle Scholar
  17. 17.
    Chan KH, Miller JD, Dearden NM, Andrews PJD, Midgley S (1992) The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood velocity and jugular bulb venous oxygen saturation severe brain injury. J Neurosurg 77: 55–61PubMedGoogle Scholar
  18. 18.
    Chyatte D, Sundt TM Jr (1984) Cerebral vasospasm after subarachnoid haemorrhage. Mayo Clin Proc 59: 498–505PubMedGoogle Scholar
  19. 19.
    Compton JS, Redmond S, Symon L (1987) Cerebral blood velocity in subarachnoid haemorrhage: a transcranial Doppler study. J Neurol Neurosurg Psychiatry 50: 1499–1503PubMedGoogle Scholar
  20. 20.
    Dahl A, Russel D, Nyberg-Hansen R, Rootwelt K (1989) Effect of nitroglycerin on cerebral circulation measured by transcranial Doppler and SPECT. Stroke 20: 1733–1736PubMedGoogle Scholar
  21. 21.
    Drake CG (1975) Intracranial aneurysms. In: Tower D (ed) The nervous system, Vol 2: the clinical neurosciences. Raven, New York, pp 287–295Google Scholar
  22. 22.
    du Boulay GH (1980) Angiography — the radiologist’s view. In: Boullin DJ (ed) Cerebral vasospasm. Wiley, Chichester, pp 47–80Google Scholar
  23. 23.
    Ecker A, Riemenschneider PA (1951) Arteriographic demonstration of spasm of the intracranial arteries with special reference to saccular aneurysms. J Neurosurg 8: 660–667PubMedGoogle Scholar
  24. 24.
    Eskesen V, Karle A, Kruse A, Kruse-Larsen C, Præstholm J, Schmidt K (1987) Observer variability in assessment of angiographic vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 87: 54–57Google Scholar
  25. 25.
    Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid haemorrhage visualised by computerized tomographic scanning. Neurosurgery 6: 1–9PubMedGoogle Scholar
  26. 26.
    Fujioka KA, Douville CM (1992) Anatomy and freehand examination techniques. In: Newell DW, Aaslid R (eds) Transcranial Doppler. Raven, New York, pp 9–32Google Scholar
  27. 27.
    Gabrielsen TO, Greitz T (1970) Normal size of the internal carotid, middle cerebral and anterior cerebral arteries. Acta Radiol (Diagn) 10: 1–10Google Scholar
  28. 28.
    Gosling RG, King DH (1974) Arterial assessment by Dopplershift ultrasound. Proc R Soc Med 67: 447–449PubMedGoogle Scholar
  29. 29.
    Greenfield JC, Tindall GT (1965) Effect of acute increase in intracranial pressure on blood flow in the internal carotid artery. J Clin Invest 44: 1343–1351PubMedGoogle Scholar
  30. 30.
    Grolimund P, Seiler RW, Aaslid R, Huber P, Zurbruegg H (1987) Evaluation of cerebrovascular disease by combined extracranial and transcranial Doppler sonography. Experience of 1039 patients. Stroke 18: 1018–1024PubMedGoogle Scholar
  31. 31.
    Grolimund P, Seiler W (1988) Age dependence of the flow velocity in the basal cerebral arteries — a transcranial Doppler ultrasound study. Ultrasound Med Biol 14: 191–198PubMedGoogle Scholar
  32. 32.
    Grosset DG, Straiton J, du Trevou M, Bullock R (1992) Prediction of symptomatic vasospasm after subarachnoid haemorrhage by rapidly increasing transcranial Doppler velocity and cerebral blood flow changes. Stroke 23: 674–679PubMedGoogle Scholar
  33. 33.
    Grote E, Hassler W (1988) The critical first minutes after subarachnoid haemorrhage. Neurosurgery 22: 654–661PubMedGoogle Scholar
  34. 34.
    Grubb RL, Raichle ME, Eichling JO, Gado MH (1977) Effects of subarachnoid haemorrhage on cerebral blood volume, blood flow and oxygen utilization in humans. J Neurosurg 46: 446–453PubMedGoogle Scholar
  35. 35.
    Harders AG, Gilsbach JM (1987) Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound. J Neurosurg 66: 718–728PubMedGoogle Scholar
  36. 36.
    Harders A, Bien S, Eggert HR, Laborde G, Merland JJ, Rufenacht D (1988) Haemodynamic changes in arteriovenous malformations induced by super-selective embolization: transcranial Doppler evaluation. Neurol Res 10: 239–245PubMedGoogle Scholar
  37. 37.
    Hassler W (1986) Haemodynamic aspects of cerebral angiomas. Acta Neurochir (Wien) [Suppl] 37: 1–136Google Scholar
  38. 38.
    Hassler W, Steinmetz H (1987) Cerebral haemodynamics in angioma patients: an intraoperative study. J Neurosurg 67: 882–931Google Scholar
  39. 39.
    Hassler W, Chioffi F (1989) CO22 reactivity of cerebral vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien) 98: 165–175Google Scholar
  40. 40.
    Hassler W, Steinmetz H, Gawlowski J (1988) Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg 68: 745–751PubMedGoogle Scholar
  41. 41.
    Hassler W, Steinmetz H, Pirschel J (1989) Transcranial Doppler study of intracranial circulatory arrest. J Neurosurg 71: 195–201PubMedGoogle Scholar
  42. 42.
    Hunt WE, Hess RM (1968) Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 28: 14–19PubMedGoogle Scholar
  43. 43.
    Hutchinson K, Weir B (1989) Transcranial Doppler studies in aneurysm patients. Can J Neurol Sci 16: 411–416Google Scholar
  44. 44.
    Ishii (1979) Regional cerebral blood flow in patients with ruptured intra-cranial aneurysms. J Neurosurg 50: 587–594PubMedGoogle Scholar
  45. 45.
    Jakobsen M, Hansen M, Enevoldsen E (1989) Time course study of AVDO2 in man following SAH: a prognostic evaluation. J Cereb Blood Flow Metab 9 [Suppl 1]: 458Google Scholar
  46. 46.
    Jakobsen M, Enevoldsen E, Bjerre P (1990a) Cerebral blood flow and metabolism following subarachnoid haemorrhage: cerebral oxygen uptake and global blood flow during the acute period in patients with SAH. Acta Neurol Scand 82: 174–182PubMedGoogle Scholar
  47. 47.
    Jakobsen M, Enevoldsen E, Dalager T (1990b) Spasm index in subarachnoid haemorrhage: consequences of vasospasm upon cerebral blood flow and oxygen extraction. Acta Neurol Scand 82: 311–320PubMedGoogle Scholar
  48. 48.
    Juul R, Edvinson L, Fredriksen TA, Ekman R, Brubakk AO, Gisvold SE (1990) Changes in the levels of neuropeptide Y-LI in the external jugular vein in connection with vasospasm following subarachnoid haemorrhage in man. Involvement of sympathetic neuropeptide Y in cerebral vasospasm. Acta Neurochir (Wien) 107: 75–81Google Scholar
  49. 49.
    Kassell NF, Torner JC (1984) The international cooperative study on timing of aneurysm surgery — an update. Stroke 15: 566–570PubMedGoogle Scholar
  50. 50.
    Kirkham FJ, Padayachee TS, Parsons S, Sergeant LS, House FR, Gosling RG (1986) Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound; velocity as an index of flow. Ultrasound Med Biol 12: 15–21PubMedGoogle Scholar
  51. 51.
    Klingelhöfer J, Sander D, Holzgraefe M, Bischoff C, Conrad B (1991) Cerebral vaso spasm evaluated by transcranial Doppler ultrasonography at different intracranial pressures. J Neurosurg 75: 752–758PubMedGoogle Scholar
  52. 52.
    Kwak R, Niizuma H, Ohi T, Suzuki J (1979) Angiographic study of cerebral vasospasm following rupture of intracranial aneurysms. Part 1: time of the appearance. Surg Neurol 11: 257–262PubMedGoogle Scholar
  53. 53.
    Lindegaard K-F, Bakke SJ, Grolimund P, Aaslid R, Huber P, Nornes H (1985) Assessment of intracranial haemodynamics in carotid artery disease by transcranial Doppler ultrasound. J Neurosurg 63: 890–898PubMedGoogle Scholar
  54. 54.
    Lindegaard K-F, Bakke SJ, Aaslid R, Nornes H (1986) Doppler diagnosis of intracranial artery occlusive disorders. J Neurol Neurosurg Psychiatry 49: 510–518PubMedGoogle Scholar
  55. 55.
    Lindegaard K-F, Grolimund P, Aaslid R, Nornes H (1986a) Evaluation of cerebral AVM’s using transcranial Doppler ultrasound. J Neurosurg 65: 335–344Google Scholar
  56. 56.
    Lindegaard K-F, Bakke SJ, Sorteberg W, Nakstad P, Nornes H (1986b) A non-invasive Doppler ultrasound method for the evaluation of patients with subarachnoid haemorrhage. Acta Radiol [Suppl] 369: 96–98Google Scholar
  57. 57.
    Lindegaard K-F, Aaslid R, Nornes H (1986c) Cerebral arteriovenous malformations. In: Aaslid R (ed) Transcranial Doppler sonography. Springer, Berlin Heidelberg New York Tokyo Wien, pp 86–105Google Scholar
  58. 58.
    Lindegaard K-F, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1989) Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir (Wien) 100: 12–24Google Scholar
  59. 59.
    Lindegaard K-F (1992) Pulsatility indices. In: Newell DW, Aaslid R (eds) Transcranial Doppler. Raven, New York, pp 67–82Google Scholar
  60. 60.
    Lundar T, Lindegaard K-F, Nornes H (1990) Continuous monitoring of middle cerebral artery blood velocity in clinical neurosurgery. Acta Neurochir (Wien) 102: 85–90Google Scholar
  61. 61.
    Markwalder TM, Grolimund P, Seiler RW, et al (1984) Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure — a transcranial ultrasound Doppler study. J Cereb Blood Flow Metabol 4: 368–372Google Scholar
  62. 62.
    Martin NA, Doberstein C, Zane C, Caron MJ, Thomas K, Becker DP (1992) Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg 77: 575–583PubMedGoogle Scholar
  63. 63.
    Matsuda M, Shiino A, Handa J (1990) Sequential changes of cerebral blood flow after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 105: 98–106Google Scholar
  64. 64.
    Mattle H, Grolimund P, Huber H, Struzenegger M, Zurbruegg HR (1988) Transcranial Doppler sonographic findings in middle cerebral artery disease. Arch Neurol 45: 289–295PubMedGoogle Scholar
  65. 65.
    Mehdorn HM, Grote W (1988) Non-invasive follow-up of patients with intracranial arteriovenous malformations after proton-beam radiation therapy. Acta Neurochir (Wien) [Suppl] 42: 98–102Google Scholar
  66. 66.
    Mickey B, Vorstrup S, Lindewald H, Harmsen A, Lassen NA (1984) Serial measurement of regional cerebral blood flow in patients with SAH using 133Xe inhalation and emission computerized tomography. J Neurosurg 60: 916–922PubMedGoogle Scholar
  67. 67.
    Nakstad P, Hald JK, Sorteberg W (1992) Carotid-cavernous fistula treated with detachable balloon during bilateral transcranial Doppler monitoring of middle cerebral arteries. Acta Radiol 33: 145–148PubMedGoogle Scholar
  68. 68.
    Newell DW, Eskridge JM, Mayberg MR, Grady MS, Winn HR (1989) Angioplasty for the treatment of symptomatic vasospasm following subarachnoid haemorrhage. J Neurosurg 71: 654–660PubMedGoogle Scholar
  69. 69.
    Newell DW, Grady MS, Eskridge JM, Winn R (1990) Distribution of angiographic vasospasm after subarachnoid haemorrhage: implications for diagnosis by transcranial Doppler ultrasonography. Neurosurgery 27: 574–577PubMedGoogle Scholar
  70. 70.
    Newell DW, Seiler RW, Aaslid R (1992a) Head injury and cerebral circulatory arrest. In: Newell DW, Aaslid R (eds) Transcranial Doppler. Raven, New York, pp 109–121Google Scholar
  71. 71.
    Newell DW, Aaslid R, Stooss R, Reulen HJ (1992b) The relationship between blood flow velocity fluctuations to intracranial pressure B waves. J Neurosurg 76: 415–421Google Scholar
  72. 72.
    Nornes H, Magnæs B (1972) Intracranial pressure in patients with ruptured saccular aneurysm. J Neurosurg 36: 537–547PubMedGoogle Scholar
  73. 73.
    Nornes H (1973a) The role of intracranial pressure in the arrest of haemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 39: 226–234Google Scholar
  74. 74.
    Nornes H (1973b) Role of the circle of Willis in graded occlusion of the carotid artery in man. Acta Neurochir (Wien) 28: 165–177Google Scholar
  75. 75.
    Nornes H (1978) Cerebral arterial flow dynamics during subarachnoid haemorrhage. Acta Neurochir (Wien) 41: 39–48Google Scholar
  76. 76.
    Nornes H, Wikeby P (1979) Results of microsurgical management of intra-cranial aneurysms. J Neurosurg 51: 608–614PubMedGoogle Scholar
  77. 77.
    Nornes H, Grip A, Wikeby P (1979a) Intraoperative evaluation of cerebral haemodynamics using directional Doppler technique. Part 1: arterio-venous malformations. J Neurosurg 50: 145–151Google Scholar
  78. 78.
    Nornes H, Grip A, Wikeby P (1979b) Intraoperative evaluation of cerebral haemodynamics using directional Doppler technique. Part 2: saccular aneurysms. J Neurosurg 50: 570–577Google Scholar
  79. 79.
    Nornes H, Grip A (1980) Haemodynamic aspects of arteriovenous malformations. J Neurosurg 53: 456–464PubMedGoogle Scholar
  80. 80.
    Nornes H, Sorteberg W, Nakstad P, Bakke SJ, Aaslid R, Lindegaard KF (1990) Haemodynamic aspects of cerebral angiography. Concurrent two vessel monitoring using transcranial Doppler ultrasound. Acta Neurochir (Wien) 105: 89–97Google Scholar
  81. 81.
    Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. J Neurosurg 61: 241–253PubMedGoogle Scholar
  82. 82.
    Olesen J, Paulson OB, Lassen NA (1971) Regional cerebral blood flow in man determined by the initial slope of the clearance of intra-arterially injected 133Xe. Theory of the method, normal values, error of measurement, correction for remaining radioactivity, relation to other flow parameters, and response to PaCO2 changes. Stroke 2: 519–540PubMedGoogle Scholar
  83. 83.
    Pasqualin A, Barone G, Cioffi F, Rosta L, Scienza R, Da Pian R (1991) The relevance of anatomic and haemodynamic factors to a classification of cerebral arteriovenous malformations. Neurosurgery 28: 370–379PubMedGoogle Scholar
  84. 84.
    Parkinson D, Bachers G (1980) Arteriovenous malformations. Summary of 100 consecutive cases. J Neurosurg 53: 285–299PubMedGoogle Scholar
  85. 85.
    Pertuiset B, Ancri D, Kinuta Y, Haisa T, Bordi L, Lin C, Mandi M, Arthuis F (1991) Classification of supratentorial arteriovenous malformations. A score system for evaluation of operability and surgical strategy based on an analysis of 66 cases. Acta Neurochir (Wien) 110: 6–16Google Scholar
  86. 86.
    Petty GW, Massaro AR, Tatemichi TK, Mohr JP, Hilal SK, Stein BM, Solomon RA, Duterte DI, Sacco RL (1990) Transcranial Doppler ultrasonographic changes after treatment for arteriovenous malformations. Stroke 21: 260–266PubMedGoogle Scholar
  87. 87.
    Powers AD, Smith RR, Graeber MC (1989) Transcranial Doppler monitoring of cerebral flow velocities during surgical occlusion of the carotid artery. Neurosurgery 25: 383–389PubMedGoogle Scholar
  88. 88.
    Powers WJ, Grubb RL, Baker RP, Mintun MA, Raichle ME (1985) Regional cerebral blood flow and metabolism in reversible ischaemia due to vasospasm. J Neurosurg 62: 539–546PubMedGoogle Scholar
  89. 89.
    Romner B, Ljunggren B, Brandt L, Säveland H (1989) Transcranial Doppler sonography within 12 hours after subarachnoid haemorrhage. J Neurosurg 70: 732–736PubMedGoogle Scholar
  90. 90.
    Romner B, Ljunggren B, Brandt L, Säveland H (1990) Correlation of trans-cranial Doppler sonography findings with timing of aneurysm surgery. J Neurosurg 73: 72–76PubMedGoogle Scholar
  91. 91.
    Schwartz A, Hennerici M (1986) Non-invasive transcranial Doppler ultrasound in intracranial angiomas. Neurology 36: 626–635PubMedGoogle Scholar
  92. 92.
    Seiler RW, Aaslid R (1986) Transcranial Doppler for evaluation of cerebral vasospasm. In: Aaslid R (ed) Transcranial Doppler sonography. Springer, Berlin Heidelberg New York Wien, pp 118–131Google Scholar
  93. 93.
    Seiler RW, Grolimund P, Aaslid R, Huber P, Nornes H (1986) Cerebral vasospasm evaluated by transcranial ultrasound correlated with clinical grade and CT-visualized subarachnoid haemorrhage. J Neurosurg 64: 594–600PubMedGoogle Scholar
  94. 94.
    Seiler RW, Grolimund P, Zurbruegg HR (1987) Evaluation of the calcium-antagonist nimodipine for the prevention of vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 85: 7–16Google Scholar
  95. 95.
    Seiler RW, Reulen HJ, Huber P, Grolimund P, Ebeling U, Steiger HJ (1988) Outcome of aneurysmal subarachnoid haemorrhage in a hospital population: a prospective study including early operation, intravenous nimodipine, and transcranial Doppler ultrasound. Neurosurgery 23: 598–604PubMedGoogle Scholar
  96. 96.
    Seiler RW, Nirkko AC (1990) Effect of nimodipine on cerebrovascular response to CO2 in asymptomatic individuals and patients with subarachnoid haemorrhage: a transcranial Doppler ultrasound study. Neurosurgery 27: 247–251PubMedGoogle Scholar
  97. 97.
    Sekhar LN, Wechsler LR, Yonas H, Luyckx K, Obrist W (1988) Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid haemorrhage. Neurosurgery 22: 813–821PubMedGoogle Scholar
  98. 98.
    Sharbrough FW, Messick JM, Sundt TM (1973) Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4: 674–683PubMedGoogle Scholar
  99. 99.
    Shi YQ, Chen XC (1986) A proposed scheme for grading intracranial arteriovenous malformations. J Neurosurg 65: 484–489PubMedGoogle Scholar
  100. 100.
    Sloan MA, Haley EC, Kassell NF, Henry ML, Stewart SR, Beskin RR, Seville EA, Torner JC (1989) Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid haemorrhage. Neurology 39: 1514–1518PubMedGoogle Scholar
  101. 101.
    Sommer C, Müllges W, Ringelstein EB (1992) Noninvasive assessment of intracranial fistulas and other small arteriovenous malformations. Neurosurgery 22: 522–528Google Scholar
  102. 102.
    Sorteberg W, Lindegaard K-F, Rootwelt K, Dahl A, Russell D, Nyberg-Hansen R, Nornes H (1989a) Blood velocity and regional blood flow in defined cerebral artery systems. Acta Neurochir (Wien) 97: 47–52Google Scholar
  103. 103.
    Sorteberg W, Lindegaard K-F, Rootwelt K, Dahl A, Nyberg-Hansen R, Russell D, Nornes H (1989b) Effect of acetazolamide on cerebral artery blood velocity and regional cerebral blood flow in normal subjects. Acta Neurochir (Wien) 97: 139–145Google Scholar
  104. 104.
    Sorteberg W, Langmoen IA, Lindegaard K-F, Nornes H (1990) Side-to-side differences and day-to-day variations of transcranial Doppler parameters in normal subjects. J Ultrasound Med 9: 403–409PubMedGoogle Scholar
  105. 105.
    Sorteberg W (1992) Cerebral artery blood velocity and cerebral blood flow. In: Newell DW, Aaslid R (eds) Transcranial Doppler. Raven, New York, pp 57–66Google Scholar
  106. 106.
    Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65: 476–483PubMedGoogle Scholar
  107. 107.
    Spetzler RF, Wilson CB, Weinstein P, Mehdorn M, Townsend J, Telles D (1978) Normal perfusion pressure breakthrough theory. Clin Neurosurg 25: 651–672PubMedGoogle Scholar
  108. 108.
    Spetzler RF, Martin NA, Carter P, Flom RA, Raudenz PA, Wilkinson E (1987) Surgical management of large AVM’s by staged embolization and operative excision. J Neurosurg 67: 17–28PubMedGoogle Scholar
  109. 109.
    Spetzler RF, Hargraves RW, McCormick PW, Zambramski JM, Flom RA, Zimmermann RS (1992) Relationship of perfusion pressure and size to risk of haemorrhage from arteriovenous malformations. J Neurosurg 76: 918–923PubMedGoogle Scholar
  110. 110.
    Sundt TM (1983) The ischaemic tolerance of neural tissue and the need for monitoring and selective shunting during carotid endarterectomy. Stroke 14: 93–98PubMedGoogle Scholar
  111. 111.
    Swearingen B, Heros RC (1987) Common carotid occlusion for unclippable carotid aneurysms: an old but still effective operation. Neurosurgery 21: 288–295PubMedGoogle Scholar
  112. 112.
    Symon L (1980) The incidence and onset of vasospasm after subarachnoid haemorrhage. In: Wilkins RH (ed) Cerebral arterial spasm. Williams and Wilkins, Baltimore, pp 306–307Google Scholar
  113. 113.
    Ungersböck K, Böcher-Schwarz H, Ulrich P, Fries G, Perneczky A (1991) Evaluation of collateral flow capacity in patients with vascular or tumorous lesions of the skull base by Doppler sonography. Neurosurg Rev 14: 181–184PubMedGoogle Scholar
  114. 114.
    Weber M, Grolimund P, Seiler RW (1990) Evaluation of posttraumatic cerebral blood flow velocities by transcranial Doppler ultrasonography. Neurosurgery 27: 106–112PubMedGoogle Scholar
  115. 115.
    Weir B, Grace N, Hansen J, Rothberg C (1978) Time course of vasospasm in man J Neurosurg 48: 173–178PubMedGoogle Scholar
  116. 116.
    Wilkins RH (1976) Aneurysm rupture during angiography: does acute vasospasm occur? Surg Neurol 5: 299–302PubMedGoogle Scholar
  117. 117.
    Wilkins RH (1980) Trauma-induced cerebral vasospasm. In: Wilkins RH (ed) Cerebral arterial spasm. Williams and Wilkins, Baltimore, pp 472–475Google Scholar
  118. 118.
    Wilkins RH (1985) Natural history of intracranial vascular malformations: a review. Neurosurgery 16: 421–450PubMedGoogle Scholar
  119. 119.
    Zanette EM, Fieschi C, Bozzao L, Roberti C, Toni D, Argentino C, Lenzi GL (1989) Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke. Stroke 15: 889–903Google Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • K.-F. Lindegaard
    • 1
  • W. Sorteberg
    • 1
  • H. Nornes
    • 1
  1. 1.Department of Neurosurgery, Rikshospitalet, The National HospitalUniversity of OsloOsloNorway

Personalised recommendations