Advertisement

3D TCAD at TU Vienna

  • E. Leitner
  • W. Bohmayr
  • P. Fleischmann
  • E. Strasser
  • S. Selberherr

Abstract

This paper gives an overview about our research on three-dimensional process simulation. Today’s activities are worldwide still suffering from a lack of appropriate geometric modeling, robust gridding, accurate and verifiable physical models as well as computationally efficient numerical algorithms. Possible solutions to some of these problems are demonstrated on the basis of our three-dimensional process simulation tools.

Keywords

Etch Rate Delaunay Triangulation Doping Profile March Cube Algorithm Boundary Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Strasser, K. Wimmer, and S. Selberherr. A New Method for Simulation of Etching and Deposition Processes. In 1993 International Workshop on VLSI Process and Device Modeling, pp 54–55, 1993.CrossRefGoogle Scholar
  2. [2]
    E.W. Scheckler and A.R. Neureuther. Models and Algorithms for Three-Dimensional Topography Simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 13: 219–230, 1994.CrossRefGoogle Scholar
  3. [3]
    W. Bohmayr, G. Schrom. and S. Selberherr. Trajectory Split Method for Monte Carlo Simulation of Ion Implantation Demonstrated by Three-Dimensional Poly-Buffered LOCOS Field Oxide Corners. In Int.Symposium on VLSI Technology, Systems, and Applications, Taipei, 1995.Google Scholar
  4. [4]
    A.M. Mazzone and G. Rocca. Three-Dimensional Monte Carlo Simulations–Part I: Implanted Profiles for Dopants in Submicron Devices. IEEE Trans. Computer-Aided Design, CAD-3(1): 64–71, 1984.CrossRefGoogle Scholar
  5. [5]
    A.M. Mazzone. Three-Dimensional Monte Carlo Simulations–Part II: Recoil Phenomena. IEEE Trans. Computer-Aided Design, CAD-4(1): 110–117, 1985.MathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Odanaka, H. Umimoto. M. Wakabayashi, and H. Esaki. SMART-P: Rigorous Three-Dimensional Process Simulator on a Supercomputer. IEEE Trans. Computer-Aided Design, 7 (6): 675–683, 1988.CrossRefGoogle Scholar
  7. [7]
    C. S. Sun, O. K. Kwon, C. G. Hwang, and H. J. Hwang. Three-Dimensional Numerical Simulation for Low Dopant Diffusion in Silicon. In S. Selberherr, H. Stippel, and E. Strasser, editors, Simulation of Semiconductor Devices and Processes, pp 413–416. Springer-Verlag Wien New York, 1993.Google Scholar
  8. [8]
    M. E. Law. Challenges to Achieving Accurate Three-Dimensional Process Simulation. In S. Selberherr, H. Stippel. and E. Strasser. editors. Simulation of Semiconductor Devices and Processes. pp 1–8. Springer-Verlag Wien New York, 1993.CrossRefGoogle Scholar
  9. [9]
    E.W. Scheckler, N.N. Tam, A.K. Pfau, and A.R. Neureuther. An Efficient Volume-Removal Algorithm for Practical Three-Dimensional Lithography Simulation with Experimental Verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 12: 1345–1356. 1993.CrossRefGoogle Scholar
  10. [10]
    W. Henke, D. Mewes. M. Weiß, G. Czech, and R. Schließl-Hoyler. A Study of Reticle Defects Imaged into Three-Dimensional Developed Profiles of Positive Photoresists Using the SOLID Lithography Simulator. Microelectronic Engineering, 14: 283–297, 1991.CrossRefGoogle Scholar
  11. [11]
    Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, and N. Nomura. Three-Dimensional Resist Process Simulator PEACE (Photo and Electron Beam Lithography Analyzing Computer Engineering System). IEEE Transactions on Computer-Aided Design of Integrated Circuits, CAD-10: 802–807, 1991.CrossRefGoogle Scholar
  12. [12]
    T. Ishizuka. Bulk Image Effects of Photoresist in Three-Dimensional Profile Simulation. Journal for Computation and Mathematics in Electrical and Electronic Engineering, 10: 389–399, 1991.CrossRefGoogle Scholar
  13. [13]
    K.K.H. Toh, A.R. Neureuther, and E.W. Scheckler. Algorithms for Simulation of Three-Dimensional Etching. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 13: 616–624, 1994.CrossRefGoogle Scholar
  14. [14]
    J. Pelka. Three-dimensional Simulation of Ion-Enhanced Dry-Etch Processes. Microelectronic Engineering, 14: 269–281. 1991.CrossRefGoogle Scholar
  15. [15]
    S. Tazawa, F.A. Leon, G.D. Anderson, T. Abe. K. Saito. A. Yoshii, and D.L. Scharfetter. 3-D Topography Simulation of Via Holes Using Generalized Solid Modeling. In Int.Electron Devices.fleeting, pp 173–176. 1992.Google Scholar
  16. [16]
    K.K.H. Toh. Algorithms for Three-Dimensional Simulation. of Photoresist Development. PhD thesis. University of California, Berkeley. 1990.Google Scholar
  17. [17]
    J.J. Heimsen, E.V. Scheckler, A.R. Neureuther, and C.H. Séquin. An Efficient Loop Detection and Removal Algorithm for 3D Surface-Based Lithography Simulation. In Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits, pp 3–8, 1992.CrossRefGoogle Scholar
  18. [18]
    E. Strasser, G. Schrom, K. Wimmer, and S. Selberherr. Accurate Simulation of Pattern Transfer Processes Using Minkowski Operations. IEICE Transactions on Electronics, E77-C: 92–97. 1994.Google Scholar
  19. [19]
    E. Strasser and S. Selberherr. Algorithms and Models for Cellular Based Topography Simulation. IEEE Trans. Computer-Aided Design. accepted for publication. 1995.Google Scholar
  20. [20]
    W.G. Oldham, A.R. Neureuther, C. Sung, J.L. Reynolds, and S.N. Nandgaonkar. A General Simulator for VLSI Lithography and Etching Processes: Part II - Application to Deposition and Etching. IEEE Trans.Electron Devices, ED-27:1455–1459, 1980.CrossRefGoogle Scholar
  21. [21]
    J. Lorenz, J. Pelka, H. Ryssel, A. Sachs. A. Seidel. and M. Svoboda. COMPOSITE–A Complete Modeling Program of Silicon Technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits. CAD-4: 421–430. 1985.CrossRefGoogle Scholar
  22. [22]
    S. Tazawa, S. Matsuo. and K. Saito. Unified Topography Simulator for Complex Reaction including both Deposition and Etching. In 1989 Symposium on VLSI Technology, pp 45–46, 1989.Google Scholar
  23. [23]
    I.A. Blech. Evaporated Film Profiles Over Steps in Substrates. Thin Solid Films, 6: 113–118, 1970.CrossRefGoogle Scholar
  24. [24]
    W.E. Lorenson and H.E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics. 21: 163–169, 1987.CrossRefGoogle Scholar
  25. [25]
    W.J. Schroeder, J.A. Zarge, and W.E. Lorenson. Decimation of Triangle Meshes. Computer Graphics, 26: 65–70, 1992.CrossRefGoogle Scholar
  26. [26]
    M.T. Robinson and O.S. Oen. Computer Studies of the Slowing Down of Energetic Atoms in Crystals. Physical Rev., 132 (6): 2385–2398, 1963.CrossRefGoogle Scholar
  27. [27]
    M.T. Robinson and I.M. Torrens. Computer Simulation of Atomic-Displacement Cascades in Solids in the Binary-Collision Approximation. Physical Rev. B, 9: 5008–5024, 1974.CrossRefGoogle Scholar
  28. [28]
    J.P. Biersack and L.G. Haggmark. A Monte Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets. Nucl.Instr.Meth., 174: 257269, 1980.Google Scholar
  29. [29]
    J.F. Ziegler, J.P. Biersack, and U. Littmark. The Stopping and Range of Ions in Solids. Pergamon Press, 1985.Google Scholar
  30. [30]
    G. Hohler and S. Selberherr. Monte Carlo Simulation of Ion Implantation into Two-and Three-Dimensional Structures. IEEE Trans. Computer-Aided Design, 8 (5): 450–459, 1989.CrossRefGoogle Scholar
  31. [31]
    H. Stippel and S. Selberherr. Three Dimensional Monte Carlo Simulation of Ion Implantation with Octree Based Point Location. In Int. Workshop on VLSI Process and Device Modeling (1993 VPAD), pp 122–123, Nara, Japan, 1993. Jap.Soc.Appl.Phys.CrossRefGoogle Scholar
  32. [32]
    H. Stippel and S. Selberherr. Monte Carlo Simulation of Ion Implantation for Three-Dimensional Structures Using an Octree. IEICE Transactions on Electronics, E77-C(2): 118–123, 1994.Google Scholar
  33. [33]
    W.D. Fellner. Computergrafik. Reihe Informatik. B.I. Wissenschaftsverlag, 1992.MATHGoogle Scholar
  34. [34]
    M. Mäntyla. An Introduction to Solid Modeling. Computer Science Press, 1988.Google Scholar
  35. [35]
    S. Abramowski and H. Müller. Geometrisches Modellieren. B.I. Wissenschaftsverlag, Mannheim, 1991.MATHGoogle Scholar
  36. [36]
    K.M. Klein, C. Park, and A.F. Tasch. Monte Carlo Simulation of Boron Implantation into Single-Crystal Silicon. IEEE Trans.Electron Devices, 39 (7): 1614–1621, 1992.CrossRefGoogle Scholar
  37. [37]
    G. Hohler, H. Pötzl. L. Gong, and H. Ryssel. Two-Dimensional Monte Carlo Simulation of Boron Implantation in Crystalline Silicon. In W. Fichtner and D. Aemmer, editors, Simulation of Semiconductor Devices and Processes, volume 4, pp 389–398, Konstanz, 1991.Google Scholar
  38. [38]
    H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann. Range Parameters of Boron Implanted into Silicon. Applied PhysicsA, 24: 39–43, 1981.Google Scholar
  39. [39]
    S.-H. Yang, D. Lim, S. Morris, and A.F. Tasch. A More Efficient Approach for Monte Carlo Simulation of Deeply-Channeled Implanted Profiles in Single-Crystal Silicon. In Int. Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits NUPAD V, pp 97–100. Honolulu. 1994.CrossRefGoogle Scholar
  40. [40]
    W. Bohmayr, A. Burenkov, J. Lorenz. H. Rvssel. and S. Selberherr. Statistical Accuracy and CPU Time Characteristic of Three Trajectory Split Methods for Monte Carlo Simulation of Ion Implantation. In Simulation of Semiconductor Devices and Processes, Erlangen, 1995.Google Scholar
  41. [41]
    A. Phillips and P.J. Price. Monte Carlo Calculations on Hot Electron Tails. Appl.Phys.Lett., 30 (10): 528–530, 1977.CrossRefGoogle Scholar
  42. [42]
    M. Jaraiz, J. Arias, E. Rubio, L.A. Marques, L. Pelaz, L. Bailon, and J. Barbollan. Dechanneling by Thermal Vibrations in Silicon Ion Implantation. In X International Conference on Ion Implantation Technology, pp Abstract P-2.19, 1994.Google Scholar
  43. [43]
    W. Bohmayr, G. Schrom, and S. Selberherr. Investigation of Channeling in Field Oxide Corners by Three-Dimensional Monte Carlo Simulation of Ion Implantation. In Int.Conference on Solid-State and Integrated-Circuit Technology, Beijing, 1995.Google Scholar
  44. [44]
    E. Leitner and S. Selberherr. Three-Dimensional Grid Adaptation Using a Mixed-Element Decomposition Method. In Simulation of Semiconductor Devices and Processes, Erlangen, 1995.Google Scholar
  45. [45]
    S. Halama. The Viennese Integrated System for Technology CAD Applications — Architecture and Critical Software Components. PhD thesis, Technische Universität Wien, 1994.Google Scholar
  46. [46]
    V. Srinivasan, L. Nackman, J. Tang, and S. Meshkat. Automatic Mesh Generation Using the Symmetric Axis Transformation of Polygonal Domains. Proc.IEEE, 80 (9): 1485–1501, 1992.CrossRefGoogle Scholar
  47. [47]
    P. Conti. Grid Generation for Three-Dimensional Semiconductor Device Simulation. Hartung-Gone, 1991.MATHGoogle Scholar
  48. [48]
    M. Bern and D. Eppstein. Mesh Generation and Optimal Triangulation. In F.K. Hwang and D.-Z. Du, editors, Computing in Euclidean Geometry, pp 201–204. World Scientific, 1992.Google Scholar
  49. [49]
    T.J. Baker. Element Quality in Tetrahedral Meshes. 7th Int. Conf. on Finite Element Models in Flow Problems, Huntsville, Alabama, 1989.Google Scholar
  50. [50]
    V.T. Rajan. Optimality of the Delaunay Triangulation in Rd. Proc. 7th ACM Symp. Comp. Geometry, pp 357–363, 1991.Google Scholar
  51. [51]
    L. Nackman and V. Srinivasan. Point Placement for Delaunay Triangulation of Polygonal Domains. Proc. 3rd Canadian Conf. Comp. Geometry. pp 37–40, 1991.Google Scholar
  52. [52]
    A. Saalfeld. Delaunay Edge Refinements.. Proc. 3rd Canadian Conf. Comp. Geometry, pp 33–36, 1991.Google Scholar
  53. [53]
    B. Joe. Three-Dimensional Triangulations from Local Transformations. SIAM J.Sci.Stat.Comput., 10 (4): 718–741, 1989.MathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    K. Sugihara and M. Iri. Construction of the Voronoi Diagram for One Million Generators in Single-Precision Arithmetic. Proc.IEEE, 80 (9): 1471–1484, 1992.CrossRefGoogle Scholar
  55. [55]
    R.E. Bank. PLTMG:.4 Software Package for Solving Elliptic Partial Differential Equations, volume 7 of Frontiers in Applied Mathematics. SIAM, 1990.Google Scholar
  56. [56]
    O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. McGraw-Hill, Fourth edition, 1989.Google Scholar
  57. [57]
    H.A. van der Vorst. BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear Systems. SIAM J.Sci.Stat.Comput., 13 (2): 631–644, 1992.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • E. Leitner
    • 1
  • W. Bohmayr
    • 1
  • P. Fleischmann
    • 1
  • E. Strasser
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU ViennaViennaAustria

Personalised recommendations