3D Simulation of Topography and Doping Processes at FhG

  • J. Lorenz
  • E. Bär
  • A. Burenkov
  • W. Henke
  • K. Tietzel
  • M. Weiß


This paper outlines activities carried out at FhG-IIS-B and FhG-ISiT on the development of algorithms and physical models required for the accurate three-dimensional simulation of topography and doping steps in semiconductor technology. The three-dimensional process simulation modules are being developed as parts of the SOLID and the PROMPT process simulation systems.


Dopant Profile Doping Process Sticking Coefficient Step Coverage Dopant Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Wille, E. Burte, H. Ryssel, “Simulation of the Step Coverage for Chemical Vapor Deposited Silicon Dioxide”, J. Appl. Phys., vol. 71, pp. 3532, 1994.CrossRefGoogle Scholar
  2. [2]
    J. Lorenz, C. Hill, H. Jaouen, C. Lombardi, C. Lyden, K. de Meyer, J. Pelka, A. Poncet, M. Rudan, S. Solmi, “The STORM Technology CAD System”. in: Technology CAD Systems (eds. F. Fasching, S. Halama, S. Selberherr ), pp. 163, Springer Verlag, Wien, 1993.Google Scholar
  3. [3]
    M. M. IslamRaja, M. A. Cappelli, J. P. McVittie, K. C. Saraswat, “A 3-Dimensional Model for Low-Pressure Chemical Vapor Deposition Step Coverage in Trenches and Circular Vias”, J. Appl. Phys. vol. 70, pp. 7137, 1991.CrossRefGoogle Scholar
  4. [4]
    L. Y. Cheng, J. P. McVittie, K. C. Saraswat, “New Test Structure to Identify Step Coverage Mechanisms in Chemical Vapor Deposition of Silicon Dioxide”, Appl. Phys. Lett., vol. 58, pp. 2147, 1991.CrossRefGoogle Scholar
  5. [5]
    J. P. McVittie, J. C. Rey, L. Y. Cheng, M. M. IslamRaja, K. C. Saraswat, “LPCVD Profile Simulation Using a Re-Emission Model”, Proc. IEDM 90, pp. 917, 1990.Google Scholar
  6. [6]
    R. Jewett, “A String Model Etching Algorithm”, SAMPLE Report No. SAMD-3, University of California, Berkeley, 1979.Google Scholar
  7. [7]
    J. E. J. Schmitz, R. C. Ellwanger, A. J. M. van Dijk, “Characterization of Process Parameters for Blanket Tungsten Contact Fill”, in: Tungsten and Other Refractory Metals for VLSI Applications III (ed. V. A. Wells), pp.. 55, MRS Pub., Pittsburgh, 1988Google Scholar
  8. [8]
    A. Hasper, J. Holleman, J. Middelhoek, C. R. Kleijn, C. J. Hoogendoorn, “Modeling and Optimization of the Step Coverage of Tungsten LPCVD in Trenches and Contact Holes”, J. Electrochem. Soc., vol. 138, pp. 1728, 1991CrossRefGoogle Scholar
  9. [9]
    W. Henke, G. Czech, “Simulation of Lithographic Images and Resist Profiles”, Microelectronic Engineering, vol. 11., pp. 629, 1990CrossRefGoogle Scholar
  10. [10]
    T. F. Yeh, A. Reiser, R. R. Dammel, G. Pawlowski, H. Roeschert, “A Scaling Law for the Dissolution of Phenolic Resins in Aqueous Base”, SPIE vol. 1925, pp. 570, 1993CrossRefGoogle Scholar
  11. [11]
    V. K. Singh, E. H. Shaqfeh, J. P. McVittie, “Simulation of Profile Evolution in Silicon Reactive Ion Etching with Re-emission and Surface Diffusion”, J. Vac. Sci. Technol. B, vol. 10, no. 3, pp. 1091, 1992CrossRefGoogle Scholar
  12. [12]
    R. Courant and D. Hilbert, “Methods of Mathematical Physics” (Wiley, New York, 1974) Vol. II, page 62Google Scholar
  13. [13]
    J. Chlebek, H.-L. Huber, H. Oertel, M. Weiss, R. Dammel, J. Lingnau, J. Theis, “Computer-aided Resist Modelling with Extended XMAS in X-ray Lithography”, Microelectronic Engineering, vol. 9, pp. 629, 1989CrossRefGoogle Scholar
  14. [14]
    J. J. Helmsen, A. R. Neureuther, “3D Lithography Cases for Exploring Technology Solutions and Benchmarking Simulators”, SPIE, vol. 1927, pp. 383, 1993Google Scholar
  15. [15]
    E. W. Scheckler, Ph. D. Dissertation, University of California, Berkeley, Nov. 1991Google Scholar
  16. [16]
    J. J. Helmsen, M. Yeung, D. Lee, A. R. Neureuther, “SAMPLE-3D Benchmarks Including High NA and Thin Film Effects”, SPIE, vol. 2197, pp. 478, 1994CrossRefGoogle Scholar
  17. [17]
    M. Komatsu, “Three Dimensional Resist Profile Simulation”, SPIE, vol. 1927, pp. 413, 1993MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Fujinaga, N. Kotani, T. Kunikiyo, H. Oda, M. Shirihata, Y. Akasaka, “Three-dimensional Topography Simulation Model: Etching and Lithography”, IEEE Trans. Electron Devices, vol. 37, pp. 2183, 1990CrossRefGoogle Scholar
  19. [19]
    A. R. Neureuther et al., “Surface-Etching Simulation and Applications in IC Processing”, Proc. Kodak Microelectronics Seminar, INTERFACE’76, Monterey, CA, pp. 81, 1976Google Scholar
  20. [20]
    A. Brochet, G. M. Dubroecq, M. Lacombat, “Modelisation des processus d’exposition et de development d’une resine photosensible positive: Application au masquage par projection”, Revue Technique Thompson-OSE, vol. 9, No. 2, pp. 285, 1977Google Scholar
  21. [21]
    W. Henke, M. Weiss, “Three Dimensional Simulation of Reticle Defects in Optical Lithography”, Proc. KTI Microlithography Seminar, INTERFACE’91, San Jose, CA, pp. 257, 1991Google Scholar
  22. [22]
    I. Sutherland, R. Sproull, R. Schumacker, “A Characterisation of Ten Hidden Surface Algorithms”, Computing Surveys, vol. 6, no. 1, pp. 1, 1974MATHCrossRefGoogle Scholar
  23. [23]
    W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, S. Selberherr, “Statistical Accuracy and CPU-time Characteristics of Three Trajectory Split Methods for Monte-Carlo Simulation of Ion Implantation”, in: Simulation of Semiconductor Devices and Processes Vol. 6 (eds. H. Ryssel, P. Pichler), Springer Verlag Wien, pp. 492, 1995CrossRefGoogle Scholar
  24. [24]
    J. Lorenz, W. Kruger, A. Barthel, “Simulation of the Lateral Spread of Implanted Ions: Theory”, in Proc. NASECODE VI (ed. J.J.W. Miller), Boole Press. Dublin, pp. 513, 1989Google Scholar
  25. [25]
    H. Ryssel, J. Lorenz, K. Hoffmann, “Models for the Implantation into Multilayer Targets”, Appl. Phys. A, vol. 41, pp. 201–207, 1986CrossRefGoogle Scholar
  26. [26]
    R.J. Wierzbicki, J.P. Biersack, A. Barthel, J. Lorenz, H. Ryssel, “Reflection Approach for the Analytical Description of Light Ion Implantation into Bilayer Structures”, Rad. Eff. and Defects in Solids, 129, 1994Google Scholar
  27. [27]
    R.J. Wierzbicki, “Analytische Beschreibung der Implantation von Ionen in Ein-und Mehrschichtstrukturen”, Ph.D. Thesis, Universität Erlangen-Nürnberg, Verlag Skaker 1994Google Scholar
  28. [28]
    J. Lorenz, R.J. Wierzbicki, H. Ryssel, “Analytical Modeling of Lateral Implantation Profiles”, Nucl. Instrum. Meth. B, vol. 96, pp. 168–172, 1995CrossRefGoogle Scholar
  29. [29]
    A. Burenkov, W. Bohmayr, J. Lorenz, H. Ryssel, S. Selberherr, “Analytical Model for Phosphorus Large Angle Tilted Implantation”, in: Simulation of Semiconductor Devices and Processes Vol. 6 (eds. H. Ryssel, P. Pichler), Springer Verlag Wien, pp. 488, 1995CrossRefGoogle Scholar
  30. [30]
    A. Burenkov, S. List, J. Lorenz, H. Ryssel, “On the Ion Implantation Models for Simulation of FOND Devices”, accepted for oral presentation at ESSDERC ‘85, The Hague, The Netherlands, September 25–27, 1995Google Scholar
  31. [31]
    K.M. Klein, C. Park, S. Morris, S.-H. Yang, A.F. Tasch, “A Two-dimensional B Implantation Model for Semiconductor Process Simulation Environments”, Nucl. Instrum. Meth. B, vol. 79, pp. 651, 1993CrossRefGoogle Scholar
  32. [32]
    J. Lorenz, R.J. Wierzbicki, “Efficient Multidimensional Simulation of Ion Implantation into Multilayer Structures”, Proc. 1993 VPAD, pp. 84, 1993Google Scholar
  33. [33]
    M. Jacob, P. Pichler, H. Ryssel, R. Falster, “Platinum Diffusion at Low Temperatures”, in: Simulation of Semiconductor Devices and Processes Vol. 6 (eds. H. Ryssel, P. Pichler), Springer Verlag Wien, pp. 472, 1995CrossRefGoogle Scholar
  34. [34]
    M. Jacob, P. Pichler, H. Ryssel, D. Gambaro, R. Falster, “Determination of Vacancy Concentration in Float Zone and Czochralski Silicon”, accepted for oral presentation at ESSDERC ‘85, The Hague, The Netherlands, September 25–27, 1995Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • J. Lorenz
    • 1
  • E. Bär
    • 1
  • A. Burenkov
    • 1
  • W. Henke
    • 2
  • K. Tietzel
    • 1
  • M. Weiß
    • 2
  1. 1.Fraunhofer-Institut für Integrierte SchaltungenBauelementetechnologie (FhG-IIS-B)ErlangenGermany
  2. 2.Fraunhofer-Institut für Siliziumtechnologie (FhG-ISiT)ItzehoeGermany

Personalised recommendations