Advertisement

A Three-Dimensional Process Simulation using Advanced SMART-P program

  • H. Umimoto
  • S. Odanaka
  • A. Gohda
Conference paper

Abstract

We developed a first version of three dimensional process simulator: SMART-P in 1987. This simulator has been used to develop the DRAM cells, CMOS processes and CCD devices. We advanced this program through these applications in some technical points, which are a TCAD system, physical models, numerical approaches and estimation techniques. In this paper, an advanced SMART-P program is described using three-dimensional simulation results of oxidation and BPSG flow.

Keywords

Impurity Concentration Oxide Growth Hole Structure Island Structure Mask Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Odanaka, H. Umimoto, M. Wakabayashi and H. Esaki, “ SMART-P: Rigorous three-dimensional process simulator on a supercomputer, ” IEEE Trans. Computer-Aided Design, vol. 7, no. 6, pp. 675–683, June 1988CrossRefGoogle Scholar
  2. [2]
    F. Fasching, S. Halama and S. Selberherr, Technology CAD Systems,Springer-Verlag Wien New YorkGoogle Scholar
  3. [3]
    R. B. Marcus and T. T. Sheng, “ The oxidation of shaped silicon surfaces, ” J. Electrochem. Soc., vol. 129, no. 6, pp. 1278–1282, June 1982CrossRefGoogle Scholar
  4. [4]
    K. Ohe, S. Odanaka, K. Moriyama, T. Hori and G. Fuse, “ Narrow-width effects of shallow trench-isolated CMOS with n+-polysilicon gate, ” IEEE Trans. Electron ‘Devices, vol. 36, no. 6, pp. 1110–1116, June 1989CrossRefGoogle Scholar
  5. [5]
    K. Kurimoto and S. Odanaka, “ A T-gate overlapped LDD device with high circuit performance and high reliability, ” in Tech. Dig. of IEDM., pp. 541–543, 1991Google Scholar
  6. [6]
    N. Shimizu, Y. Naito, Y. Itoh, Y. Shibata, K. Hashimoto, M. Nishio, A. Asai, K. Ohe, H. Umimoto and Y. Hirofuji, “ A poly-buffer recessed LOCOS process for 256Mbit DRAM cells, ” in Tech. Dig. of IEDM., pp. 279–282, 1992Google Scholar
  7. [7]
    H. Umimoto, S. Odanaka, I. Nakao and H. Esaki, “ Numerical modeling of nonplanar oxidation coupled with stress effects, ” IEEE Trans. Computer-Aided Design, vol. 8, no. 6, pp. 599–607, June 1989CrossRefGoogle Scholar
  8. [8]
    H. Umimoto, S. Odanaka and I. Nakao, “ Numerical simulation of stress-dependent oxide growth at convex and concave corners of trench structures, ” IEEE Electron Device Letters, vol. 10, no. 7, pp. 330–332, July 1989CrossRefGoogle Scholar
  9. [9]
    H. Umimoto, S. Odanaka and S. Imai, “ A three-dimensional dynamic simulation of borophosphosilicate glass flow, ” in Tech. Dig. of Sympo. VLSI Tech., pp. 47–48, 1991Google Scholar
  10. [10]
    H. Umimoto, S. Odanaka and S. Imai, “ A 3-D BPSG flow simulation with temperature and impurity concentration dependent viscosity model, ” in Tech. Dig. of IEDM., pp. 709–712, 1991Google Scholar
  11. [11]
    H. Umimoto and S. Odanaka, “ Three-dimensional numerical simulation of local oxidation of silicon, ” IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 505–511, June 1991CrossRefGoogle Scholar
  12. [12]
    S. Odanaka, A. Hiroki, K. Ohe, K. Moriyama and H. Umimoto, “ SMART-II: A three-dimensional CAD model for submicrometer MOSFET’s, ” IEEE Trans. Computer-Aided Design, vol. 10, no. 5, pp. 619–628, May 1991CrossRefGoogle Scholar
  13. [13]
    H. Ryssel, Ion Implantation Technique., New York: Springer-Verlag, 1982Google Scholar
  14. [14]
    G. Fuse, H. Umimoto, S. Odanaka, M. Wakabayashi, M. Fukumoto and T. Ohzone, “ Depth profiles of boron atoms with large tilt-angle implantation, ” J. Electrochem. Soc., vol. 133, no. 5, pp. 996–998, May 1986CrossRefGoogle Scholar
  15. [15]
    J. F. Gibbons, W. S. Johnson and S. W. Mylroie, Projected Range Statistics, Semiconductor and Related Materials, 2nd ed. Halsted Press, 1975Google Scholar
  16. [16]
    D. Collard and K. Taniguchi, “ IMPACT – A point-defect-based two dimensional process simulator: Modeling the lateral oxidation-enhanced diffusion of dopants in silicon, ” IEEE Trans. Electron Devices, vol.ED-33, no. 10, pp. 1454–1462, Oct. 1986CrossRefGoogle Scholar
  17. [17]
    R. B. Fair, J. J. Wortman and J. Liu, “ Modeling rapid thermal diffusion of arsenic and boron in silicon. ” J. Electrochem. Soc., vol. 131, no. 10, pp. 2387–2394, Oct. 1984CrossRefGoogle Scholar
  18. [18]
    K. Taniguchi, D. A. Antoniadis and Y. Matsushita, “ Kinetics of self-interstitials generated at the Si/SiO 2 interface, ” Appl. Phys. Lett., vol. 42, no. 11, pp. 961–963, June 1983CrossRefGoogle Scholar
  19. [19]
    S. Matsumoto, Y. Ishikawa. and T. Niimi, “ Oxidation enhanced and concentration dependent diffusions of dopants in silicon, ” J. Appl. Phys., vol.54, no.9, pp. 5049–5054, Sept. 1983CrossRefGoogle Scholar
  20. [20]
    D. Chin, S. Y. Oh, S. M. Hu, R. W. Dutton, and J. L. Moll, “ Two-dimensional oxidation, ” IEEE Trans. Electron Devices, vol. ED-30, no. 7, pp. 744–749, July 1983CrossRefGoogle Scholar
  21. [21]
    B. E. Deal and A. S. Grove, “ General relationship-for the thermal oxidation of silicon, ” J. Appl. Phys., vol. 36, no. 12, pp. 3770–3778, Dec. 1965CrossRefGoogle Scholar
  22. [22]
    J. A. Appels, E. Kooi, M. M. Paffen, J. J. H. Schatorji, and W. H. C. G. Veikuylen, “ Local oxidation of silicon and its application in semiconductor device technology,” Philips Res. Rep., vol. 25, pp. 118–132, 1970.Google Scholar
  23. [23]
    D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, “ Two-dimensional thermal oxidation of silicon-II. Modeling stress effects in wet oxides, ” IEEE Trans. Electron Devices, vol. ED-35, pp. 25–37, Jan. 1988CrossRefGoogle Scholar
  24. [24]
    W. Kern and G. L. Schnable, “ Chemically vapor-deposited borophosphosilicate glasses for silicon device applications, ” RCA Review, vol. 43, pp. 423–457, 1982Google Scholar
  25. [25]
    P. Sutardja and W. G. Oldham, “ Two-dimensional simulation of glass reflow and silicon oxidation, ” in Tech. Dig. of Sympo. VLSI Tech., pp. 39–40, 1986Google Scholar
  26. [26]
    K. Nassau, R. A. Levy, and D. L. Chadwick, “ Modified phosphosilicate glasses for VLSI applications, ” J. Electrochem. Soc., vol. 132, no. 2, pp. 409–415, 1985CrossRefGoogle Scholar
  27. [27]
    M. Yoshimaru and H. Matsuhashi, Okidenki Kenkyu Kaihatsu, vol. 53, no. 2, pp. 79-, 1986Google Scholar
  28. [28]
    R.. B. Penumalli, “ A comprehensive two-dimensional VLSI process simulator program, BICEPS, ” IEEE Trans. Electron Devices, vol. ED-30, no. 9, pp. 986–992. Sept. 1983CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • H. Umimoto
    • 1
  • S. Odanaka
    • 1
  • A. Gohda
    • 1
  1. 1.Semiconductor Research CenterMatsushita Electric Industrial Co., Ltd.Moriguchi, OsakaJapan

Personalised recommendations