Advertisement

The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared

  • W. Gsell
  • I. Strein
  • P. Riederer
Part of the Journal of Neural Transmission Supplement book series (NEURAL SUPPL, volume 47)

Summary

We present the results of a meta-analysis of neurochemical changes in human post mortem brains of Alzheimer type (AD), vascular type (VD) and mixed type (MF) dementias, and matched controls based on 275 articles published between January 1980 and February 1994.

Severity of degeneration between the different neurochemical systems is as follows, although ranking is difficult with regard to limited numbers of investigations in some neurochemical systems: Cholinergic system > serotonergic system > excitatory amino acids > GABAergic system > energy metabolsim > NA > oxidative stress parameters > neuropeptides > DA. But, within a neurochemical system, degeneration is not evenly distributed. Spared parameters, e.g. muscarinic receptors and MAO-B, allow to make some suggestions for future therapeutic strategies.

Keywords

Alzheimer Type Senile Dementia Neurobiol Aging Single Record Alzheimer Type Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adern A (1987) Characterization of muscarinic and nicotinic receptors in neural and non-neural tissue: changes in Alzheimer’s disease. Acta Universitas Uppsaliensis: Comprehensive summaries of Uppsala Dissertations from the Faculty of Pharmacy, vol 32: 4–61Google Scholar
  2. Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27: 1029–1034PubMedGoogle Scholar
  3. Allard P, Alafuzoff I, Carlsson A, Eriksson K, Ericson E, et al (1990) Loss of dopamine uptake sites labeled with (3H)GBR-12935 in Alzheimer’s disease. Eur Neurol 30: 181–185PubMedGoogle Scholar
  4. Antuono P, Sorbi S, Bracco L, Fusco T, Amaducci L (1980) A discrete sampling technique in senile dementia of the Alzheimer type and alcoholic dementia: study of the cholinergic system. In: Amaducci L, et al (eds) Aging of the brain and dementia. Raven Press, New York, pp 151–158Google Scholar
  5. Aoyagi T, Wada T, Nagai M, Kojima F, Harada S, et al (1990) Increased gammaaminobutyrate aminotransferase activity in brain of patients with Alzheimer’s disease. Chem Pharm Bull 38: 1748–1749PubMedGoogle Scholar
  6. Arai H, Moroji T, Kosaka K (1984) Somatostatin and vasoactive intestinal polypeptide in postmortem brains from patients with Alzheimer-type dementia. Neurosci Lett 52: 73–78PubMedGoogle Scholar
  7. Arai H, Kobayashi K, Ichimiya Y, Kosaka K, Iizuka R (1984) A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging 5: 319–321PubMedGoogle Scholar
  8. Arai H, Kosaka K, Iizuka R (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 43: 388–393PubMedGoogle Scholar
  9. Arai H, Takashi M, Kosaka K, Iizuka R (1986) Extrahypophyseal distribution of alphamelanocyte stimulating hormone (alpha-MSH)-like immunoreactivity in postmortem brains from normal subjects and Alzheimer-type dementia patients. Brain Res 377: 305–310PubMedGoogle Scholar
  10. Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50: 1914–1923PubMedGoogle Scholar
  11. Arregui A, Perry EK, Rossor M, Tomlinson BE (1982) Angiotensin converting enzyme in Alzheimer’s disease: increased activity in caudate nucleus and cortical areas. J Neurochem 38: 1490–1492PubMedGoogle Scholar
  12. Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, et al (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40: 199–204PubMedGoogle Scholar
  13. Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, et al (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s disease. J Neurochem: 529–541Google Scholar
  14. Baker GB, Reynolds GP (1989) Biogenic amines and their metabolites in Alzheimer’s disease: noradrenaline, 5-hydroxytryptamine and 5-hydroxyindol-3-acetic acid depleted in hippocampus but not in substantia innominata. Neurosci Lett 100: 335–339PubMedGoogle Scholar
  15. Beal MF, Mazurek M, Tran VT, Chattha G, Bird E, et al (1985) Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer’s disease. Science 229: 289–291PubMedGoogle Scholar
  16. Beal MF, Mazurek MF, Chatta G, Bird ED, Martin JB (1985) Neuropeptide Y immunoreactivity is reduced in Alzheimer’s disease cerebral cortex. Soc Neurosci Abstr 11: 1119Google Scholar
  17. Beal MF, Mazurek MF, Svendsen CN, Martin JB, Chatta GK, et al (1986) Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease. Ann Neurol 20: 282–288PubMedGoogle Scholar
  18. Beal MF, Mazurek MF, Svendsen CN, Bird ED, Martin JB, et al (1986) Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer’s disease. Ann Neurol 20: 489–495PubMedGoogle Scholar
  19. Beal MF, Clevens R, Chattha GK, MacGarvey UM, Mazurek MF, et al (1988) Galaninlike immunoreactivity is unchanged in Alzheimer’s disease and Parkinson’s disease dementia cerebral cortex. J Neurochem 51: 1935–1941PubMedGoogle Scholar
  20. Biggins JA, Perry EK, McDermott JR, Smith AI, Perry RH, et al (1983) Post mortem levels of thyrotropin-releasing hormone and neurotensin in the amygdala in Alzheimer’s disease, schizophrenia and depression. J Neurol Sci 58: 117–122PubMedGoogle Scholar
  21. Bird TD, Stranahan S, Sumi SM, Raskind M (1983) Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol 14: 284–293PubMedGoogle Scholar
  22. Blusztajn JK, Gonzalez-Coviella IL, Logue M, Growdon JH, Wurtman RJ (1990) Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer’s disease but not of Down’s syndrome patients. Brain Res 536: 240–244PubMedGoogle Scholar
  23. Bowen DM (1981) Alzheimer’s disease. In: Davison AN, Thompson RHS (eds) The molecular basis of neuropathology. Igaku-Shoin, NY Tokyo, pp 649–661Google Scholar
  24. Bowen DM (1983) Biochemical assessment of neurotransmitter and metabolic dysfunction and cerebral atrophy in Alzheimer’s disease. In: Biological aspects of Alzheimer’s disease. Banbury Report No 15, Cold Spring Harbor Lab NY, pp 219–230Google Scholar
  25. Bowen DM, Davison AN (1980) Biochemical changes in the cholinergic system of the aging brain and in senile dementia. Psychol Med 10: 315–319PubMedGoogle Scholar
  26. Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, et al (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 41: 266–272PubMedGoogle Scholar
  27. Bowen DM, Davison AN, Francis PT, Palmer AM, Pearce BR, et al (1985) Neurotransmitter and metabolic dysfunction in Alzheimer’s dementia: relationship to histopathological features. Interdiscip Topics Geront 19: 156–174Google Scholar
  28. Bowen DM, Najlerahim A, Procter AW, Francis PT (1989) Circumscribed changes of the cerebral cortex in neuro-psychiatric disorders of later life. Proc Natl Acad Sci USA 86: 9504–9508PubMedGoogle Scholar
  29. Burke WJ, Chung HD, Nakra BRS, Grossberg GT (1987) Phenylethanolamine N-methyl transferase activity is decreased in Alzheimer’s disease brains. Ann Neurol 22: 278–280PubMedGoogle Scholar
  30. Burke WJ, Chung HD, Strong R, Marshall GL, Davies JW, et al (1987) Phenylethanolamine N-methyltransferase in normal and Alzheimer’s disease brains. In: Wood WG, Strong R (eds) Geriatric clinical pharmacology. Raven Press, New York, pp 47–69Google Scholar
  31. Butterworth J, Tennant M, Yates CM (1988) Brain enzymes in agonal state and dementia. Biochem Soc Trans 17: 208–209Google Scholar
  32. Candy JM, Perry RH, Perry EK, Irving D, Blessed G, et al (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s disease. J Neurol Sci 54: 277–289Google Scholar
  33. Candy JM, Gascoigne AD, Biggins JA, Smith AI, Perry RH, et al (1985) Somatostatin immunoreactivity in cortical and some subcortical regions in Alzheimer’s disease. J Neurol Sci 71: 315–323Google Scholar
  34. Candy JM, Perry EK, Perry RH, Court JA, Oakley AE, et al (1986) The current status of the cortical cholinergic system in Alzheimer’s disease and Parkinson’s disease. Progr Brain Res 70: 105–132Google Scholar
  35. Carlsson A (1986) Brain neurotransmitters in normal and pathological aging. Biol Subst Alz Dis 193–203Google Scholar
  36. Carlsson A (1987) Brain neurotransmitters in aging and dementia: similar changes across diagnostic dementia groups. Gerontology 33: 159–167PubMedGoogle Scholar
  37. Carlsson A, Adolfsson R, Aquilonius S, Gottfries C, Oreland L, et al (1980) Biogenic amines in human brain in normal aging, senile dementia and chronic alcoholism. In: Goldstein M, et al (eds) Ergot compounds and brain function: neuroendocrine and neuropsychiatric aspects. Raven Press, New York, pp 295–304Google Scholar
  38. Carlsson A, Gottfries CG, Svennerholm L, Adolfsson R, Oreland L, et al (1980) Neurotransmitters in human brain analyzed post mortem: changes in normal aging, senile dementia and chronic alcoholism. In: Rinne UK, Klinger M, Stamm G (eds) Parkinson’s disease — current progress, problems and management. Elsevier Biomedical Press, Amsterdam, pp 121–133Google Scholar
  39. Carlsson A, Gottfries CG, Eckernäs SA, Alafuzoff I, Winblad B (1988) Neurotransmitter changes in dementia: failure to demonstrate relation to histopathologic lesions or multiple infarctions. Biogen Amines 5: 199–204Google Scholar
  40. Caulsfield MP, Straughan DW, Cross AJ, Crow T, Bridsall NJM (1982) Cortical muscarinic receptor subtypes and Alzheimer’s disease. Lancet 4: 12–77Google Scholar
  41. Chu DCM, Penney JB, Young AB (1987) Cortical GABA-B and GABA-A receptors in Alzheimer’s disease: a quantitative autoradiographic study. Neurology 37: 1454–1459PubMedGoogle Scholar
  42. Clevens RA, Beal MF (1989) Substance P-like immunoreactivity in brains with pathological features of Parkinson’s and Alzheimer’s disease. Brain Res 486: 387–390PubMedGoogle Scholar
  43. Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452: 165–174PubMedGoogle Scholar
  44. Cortes R, Probst A, Tobler HJ, Palacios JM (1986) Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies. Brain Res 362: 239–253PubMedGoogle Scholar
  45. Cowburn RF, Barton AJL, Hardy JA, Wester P, Winblad B (1987) Region-specific defects in glutamate and gamma-aminobutyric acid innervation in Alzheimer’s disease. Biochem Soc Trans 15: 505–506Google Scholar
  46. Cowburn R, Hardy J, Roberts P, Briggs R (1988) Regional distribution of pre-and postsynatic glutamatergic function in Alzheimer’s disease. Brain Res 452: 403–407PubMedGoogle Scholar
  47. Cowburn RF, Hardy JA, Briggs RS, Roberts P (1989) Characterisation, density, and distribution of kainate receptors in normal and Alzheimer’s diseased human brain. J Neurochem 52: 140–147PubMedGoogle Scholar
  48. Cowburn RF, Fowler CJ, Garlind A, Alafuzoff I, Nilsson L, et al (1991) Somatostatin receptors and the modulation of adenylyl cyclase activity in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 54: 748–749PubMedGoogle Scholar
  49. Cowburn RF, O’Neill C, Ravid R, Alafuzoff I, Winblad B, et al (1992) Adenylyl cyclase activity in postmortem human brain: evidence of altered G protein mediation in Alzheimer’s disease. J Neurochem 58: 1409–1419PubMedGoogle Scholar
  50. Crino PB, Ullman MD, Vogt BA, Bird ED, Volicer L (1989) Brain gangliosides in dementia of the Alzheimer type. Arch Neurol 46: 398–401PubMedGoogle Scholar
  51. Cross A, Crow TJ, Perry E, Perry R, Blessed G, et al (1981) Reduced dopamine-betahydroxylase activity in Alzheimer’s disease. Br Med J 282: 93–94Google Scholar
  52. Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, et al (1983) Monoamine metabolism in senile dementia of Alzheimer type. J Neurol Sci 60: 383–392PubMedGoogle Scholar
  53. Cross A, Crow TJ, Johnson JA, Perry EK, Perry RH, et al (1984) Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. J Neurol Sci 64: 109–117PubMedGoogle Scholar
  54. Cross AJ, Ferrier IN, Crow TJ, Johnson JA, Markakis D (1984) Striatal dopamine receptors in Alzheimer-type dementia. Neurosci Lett 52: 1–6PubMedGoogle Scholar
  55. Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, et al (1984) Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43: 1574–1581PubMedGoogle Scholar
  56. Cross AJ, Crow TJ, Ferrier IN, Johnson JA (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7: 3–7PubMedGoogle Scholar
  57. Cross AJ, Slater P, Simpson M, Royston C, Deakin JFW, et al (1987) Sodium dependent D-3H-aspartate binding in cerebral cortex in patients with Alzheimer’s and Parkinson’s disease. Neurosci Lett 79: 213–217PubMedGoogle Scholar
  58. Cross AJ, Slater P, Candy JM, Perry EK, Perry RH (1987) Glutamate deficits in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 50: 357–358Google Scholar
  59. Crow TJ, Cross AJ, Cooper SJ, Deakin JFW, Ferrier IN, et al (1984) Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology 23: 1561–1569PubMedGoogle Scholar
  60. Crystal HA, Davies P (1982) Cortical substance P-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type. J Neurochem 38: 1781–1784PubMedGoogle Scholar
  61. D’Amato RJ, Zweig RM, Whitehouse RJ, Wenk GL, Singer HS, et al (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann Neurol 22: 229–236PubMedGoogle Scholar
  62. Danielsson E, Eckernäs SA, Westlind-Danielsson A, Nordström ò, Bartfai T, et al (1986) VIP-sensitive adenylate cyclase, guanylate cyclase, muscarinic receptors, choline acetylteransferase and acetylcholinesterase, in brain tissue afflicted by Alzheimer’s disease/SDAT. In: Muscarinic receptors and cGMP synthesis: studies on human and rat tissue. Thesis, Stockholm Universitet, SwedenGoogle Scholar
  63. Danielsson E, Eckernäs SA, Westlind-Danielsson A, Nordström ò, Bartfai T, et al (1988) VIP-sensitive adenylate cyclase, guanylate cyclase, muscarinic receptors, choline acetyltransferase and acetylcholinesterase, in brain tissue afflicted by Alzheimer’s disease/SDAT. Neurobiol Aging 9: 153–162PubMedGoogle Scholar
  64. Davies P, Terry R (1981) Cortical Somatostatin-Like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type. Neurobiol Aging 2: 9–14PubMedGoogle Scholar
  65. Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288: 279–280PubMedGoogle Scholar
  66. Davies P, Katz DA, Crystal HA (1982) Choline acetyltransferase, somatostatin, and substance P in selected cases of Alzheimer’s disease. In: Corkin S, et al (eds) Alzheimer’s disease: a report of progress. Raven Press, New York, pp 9–14Google Scholar
  67. Dawbarn D, Rossor MN, Mountjoy CQ, Roth M, Emson PC (1986) Decreased somatostatin immunoreactivity but not neuropeptide Y immunoreactivity in cerebral cortex in senile dementia of Alzheimer type. Neurosci Lett 70: 154–159PubMedGoogle Scholar
  68. Dewar D, Horsburgh K, Graham DI, Brooks DN, McCulloch J (1990) Selective alterations of high affinity 3H-forskolin binding sites in Alzheimer’s disease: a quantitative autoradiographic study. Brain Res 511: 241–248PubMedGoogle Scholar
  69. Dziedzic JD, Wisniewski HM, Iqbal K (1981) Monoamine oxidase activity in normal and Alzheimer brains. Ann Neurol 9: 618–619PubMedGoogle Scholar
  70. Ebinger G, Bruyland M, Martin JJ, Herregodts P, Cras P, et al (1987) Distribution of biogenic amines and their catabolites in brains from patients with Alzheimer’s disease. J Neurol Sci 77: 267–283PubMedGoogle Scholar
  71. Ellison DW, Beal MF, Mazurek MF, Bird ED, Martin JB, et al (1986) A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann Neurol 20: 616–621PubMedGoogle Scholar
  72. Ellison DW, Beal MF, Martin JB (1987) Phosphoethanolamin and ethanolamin are decreased in Alzheimer’s disease and Huntington’s disease. Brain Res 417: 389–392PubMedGoogle Scholar
  73. Etienne P, Robitaille Y, Wood P, Gauthier S, Nair NPV, et al (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience 19: 1279–1291PubMedGoogle Scholar
  74. Farooqui AA, Liss L, Horrocks LA (1989) Lipolytic enzyme activities in different brain regions in Alzheimer’s disease. In: Bazan NG, Horrocks LA, Toffano G (eds) Phospholipids in the nervous system: biochemical and molecular pathology. Liviana Press, Padova (Fidia Research Series, vol 17)Google Scholar
  75. Ferrier IN, Cross AJ, Johnson JA, Roberts GW, Crow TJ, et al (1983) Neuropeptides in Alzheimer type dementia. J Neurol Sci 62: 159–170PubMedGoogle Scholar
  76. Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, et al (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 19: 246–252PubMedGoogle Scholar
  77. Flynn DD, Mash DC (1986) Characterization of L-3H-nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 47: 1948–1954PubMedGoogle Scholar
  78. Foster NL, Tamminga CA, O’Donohue TL, Tanimoto K, Bird ED, et al (1986) Brain choline acetyltransferase activity and neuropeptide Y concentrations in Alzheimer’s disease. Neurosci Lett 63: 71–75PubMedGoogle Scholar
  79. Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49: 1–20PubMedGoogle Scholar
  80. Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, et al (1985) Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment. N Engl J Med 313: 7–11PubMedGoogle Scholar
  81. Fujiyoshi K, Suga H, Okamoto K, Nakamura S, Kameyama M (1987) Reduction of arginin-vasopressin in the cerebral cortex in Alzheimer type senile dementia. J Neurol Neurosurg Psychiatry 50: 929–932PubMedGoogle Scholar
  82. Geddes JW, Chang-Chui H, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399: 156–161PubMedGoogle Scholar
  83. Geola FL, Yamada T, Warwick RJ, Tourtelotte WW, Hershman JM (1981) Regional distribution of somatostatin-like immunoreactivity in the human brain. Brain Res 229: 35–42PubMedGoogle Scholar
  84. Giacobini E, DeSarno P, Mcllhany M, Clark B (1988) The cholinergic receptor system in the frontal lobe of Alzheimer patients. In: Clementi F, Gotti C (eds) Nicotinic acetylcholine receptors in the nervous system. Springer, Berlin Heidelberg New York Tokyo, pp 367–378Google Scholar
  85. Gilbert JJ, Kish SJ, Chang LJ, Morito C, Shannak K, et al (1988) Dementia, parkinsonism, and motor neuron disease: neurochemical and neuropathological correlates. Ann Neurol 24: 688–691PubMedGoogle Scholar
  86. Gottfries CG (1980) Amine metabolism in normal aging and in dementia disorders. In: Roberts PJ (ed) Biochemistry of dementia. Wiley and Sons, Chichester, pp 213–234Google Scholar
  87. Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernäs SA, et al (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol Aging 4: 261–271PubMedGoogle Scholar
  88. Gottfries CG, Bartfai T, Carlsson A, Eckernäs S, Svennerholm L (1986) Multiple biochemical deficits in gray and white matter of Alzheimer brains Prog Neuropsychopharmacol Biol Psychiatry 10: 405–413PubMedGoogle Scholar
  89. Gramsbergen JBP, Mountjoy CQ, Rossor MN, Reynolds GP, Roth M, et al (1987) A correlative study on hippocampal cation shifts and amino acids and clinicopathological data in Alzheimer’s disease. Neurobiol Aging 8: 487–494PubMedGoogle Scholar
  90. Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP (1985) Alterations in L-glutamate binding in Alzheimer’s and Huntington’s disease. Science 227: 1496–1499PubMedGoogle Scholar
  91. Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-3H-glutamate binding. J Neurochem 48: 543–551PubMedGoogle Scholar
  92. Gulya K, Watson M, Vickroy TW, Roeske WR, Perry R, et al (1986) Examination of cholinergic and neuropeptide receptor alterations in senile dementia of the Alzheimer’s type (SDAT). In: Alzheimer’s and Parkinson’s disease. Strategies for research and development, vol 29. Plenum Press, New York, pp 109–116Google Scholar
  93. Hammond P, Brimijoin S (1988) Acetyicholinesterase in Huntington’s and Alzheimer’s diseases: simultaneous enzyme assay and immunoassay of multiple brain regions: J Neurochem 50: 1111–1116PubMedGoogle Scholar
  94. Hansen LA, De Teresa R, Davies P, Terry R (1988) Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer’s disease. Neurology 38: 48–54PubMedGoogle Scholar
  95. Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, et al (1986) Glutamate deficits in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 50: 356–357Google Scholar
  96. Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, et al (1987) Region-specific loss of glutamate innervation in Alzheimer’s disease. Neurosci Lett 73: 77–80PubMedGoogle Scholar
  97. Hays S, Paul SM (1982) CCK receptors and human neurological disease. Life Sci 31: 319–322Google Scholar
  98. Herregodts P, Bruyland M, Keyser J, Solheid C, Michotte Y, et al (1989) Monoaminergic neurotransmitters in Alzheimer’s disease. J Neurol Sci 92: 101–116PubMedGoogle Scholar
  99. Horoupian DS, Thal L, Katzmann R, Terry RD, Davies P, et al (1984) Dementia and motor neuron disease: morphometric, biochemical, and Golgi studies. Ann Neurol 16: 305–313PubMedGoogle Scholar
  100. Hyman BT, Van Hoesen GW, Damasio AR (1987) Alzheimer’s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22: 37–40PubMedGoogle Scholar
  101. Ichimiya Y, Arai H, Kosaka K, Iizuka R (1986) Morphological and biochemical changes in the cholinergic and monoaminergic systems in Alzheimer-type dementia. Acta Neuropathol 70: 112–116PubMedGoogle Scholar
  102. limoto DS, Masliah E, DeTeresa R, Terry R, Saitoh T (1989) Aberrant casein kinase II in Alzheimer’s disease. Brain Res 507: 273–280Google Scholar
  103. Inada M, Toyoshima M, Kameyama M (1982) Cobalamin contents of the brain in some clinical and pathological states. Int J Vit Nutr Res 52: 423–429Google Scholar
  104. Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, et al (1983) Loss of pigmented dopamine-13-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer’s type. Neurosci Lett 39: 95–100PubMedGoogle Scholar
  105. Iwamoto N, Kobayashi K, Kosaka K (1989) The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients. J Neurol 236: 80–84PubMedGoogle Scholar
  106. Jagust W, Davies P, Tiller-Borcich J, Reed B (1990) Focal Alzheimer’s disease. Neurology 40: 14–19PubMedGoogle Scholar
  107. Jansen KLR, Faull RLM, Dragunow M, Synek BL (1990) Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosin, benzodiazepin, serotonin and opioid receptors in an autoradiographic study. Neuroscience 39: 613–627PubMedGoogle Scholar
  108. Jellinger K, Riederer P (1984) Dementia in Parkinson’s disease and (pre) senile dementia of Alzheimer type: morphological aspects and changes in the intracerebral MAO activity. Adv Neurol 40: 199–210PubMedGoogle Scholar
  109. Jenni-Eiermann S, Hahn von HP, Honegger CG, Ulrich J (1984) Studies on neurotrans mitter binding in senile dementia. Gerontol 30: 350–358Google Scholar
  110. Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, et al (1989) Adrenergic receptors in aging and Alzheimer’s disease: increased a2-receptors in prefrontal cortex and hippocampus. J Neurochem 53: 1772–1781PubMedGoogle Scholar
  111. Kanazawa I, Kwak S, Sasaki H, Muramoto O, Mitzutani T, et al (1988) Studies on neurotransmitter markers of the basal ganglia in Pick’s disease, with special references to dopamine reduction. J Neurol Sci 83: 63–74PubMedGoogle Scholar
  112. Kanfer JN, McCartney DG (1986) Reduced phosphorylcholine hydrolysis by homogenates of temporal regions of Alzheimer’s brain. Biochem Biophys Res Comm 139: 315–319PubMedGoogle Scholar
  113. Kanfer JN, Pettegrew JW, Moossy J, McCartney DG (1993) Alterations of selected enzymes of phospholipid metabolism in Alzheimer’s disease brain tissue as compared to Non-Alzheimer’s demented controls. Neurochem Res 18: 331–334PubMedGoogle Scholar
  114. Katzman R, Terry R, DeTeresa R, Brown T, Davies P, et al (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23: 138–144PubMedGoogle Scholar
  115. Kellar KJ, Whitehouse PJ, Martino-Barrows AM, Marcus K, Price DL (1987) Muscarinic and nicotinic cholinergic binding sites in Alzheimer’s disease cerebral cortex. Brain Res 436: 62–68PubMedGoogle Scholar
  116. Kerwin JM, Morris CM, Perry RH, Perry EK (1992) Hippocampal nerve growth factor receptor immunoreactivity in patients with Alzheimer’s and Parkinson’s disease. Neurosci Lett 143: 101–104PubMedGoogle Scholar
  117. Kish SJ, Robitaille Y, EI-Awar M, Deck JHN, Simmons J, et al (1989) Non-Alzheimertype pattern of brain cholineacetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy. Ann Neurol 26: 362–367PubMedGoogle Scholar
  118. Kosaka K, Iizuka R, Mizutani Y, Kondo T, Nagatsu T (1981) Striatonigral degeneration combined with Alzheimer’s disease. Acta Neuropathol 54: 253–256PubMedGoogle Scholar
  119. Koshimura K, Kato T, Tohyama I, Nakamura S, Kameyama M (1986) Qualitative abnormalities of choline acetyltransferase in Alzheimer type dementia. J Neurol Sci 76: 143–150PubMedGoogle Scholar
  120. Krantic S, Robitaille Y, Quirion R (1992) Deficits in the somatostatin SS1 receptor subtype in frontal and temporal cortices in Alzheimer’s disease. Brain Res 573: 299–304PubMedGoogle Scholar
  121. Lang W, Henke H (1983) Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer-type patients. Brain Res 267: 271–280PubMedGoogle Scholar
  122. Leake A, Perry EK, Perry RH, Fairbairn AF, Ferrier IN (1990) Cortical concentrations of corticotropin-releasing hormone and its receptor in Alzheimer type dementia and major depression. Biol Psychiatry 28: 603–608PubMedGoogle Scholar
  123. Leake A, Perry EK, Perry R, Jabeen S, Fairbairn AF, et al (1991) Neocortical concentrations of neuropeptides in senile dementia of the Alzheimer and Lewy Body Type: comparison with Parkinson’s disease and severity correlations. Biol Psychiatry 29: 357–364PubMedGoogle Scholar
  124. Lemmer B, Langer L, Ohm T, Bohl J (1993) Beta-adrenoceptor density and subtype distribution in cerebellum and hippocampus from patients with Alzheimer’s disease. Naunyn Schmiedebergs Arch Pharmacol 347: 214–219PubMedGoogle Scholar
  125. London ED, Ball MJ, Waller SB (1989) Nicotinic binding sites in cerebral cortex and hippocampus in Alzheimer’s dementia. Neurochem Res 14: 745–750PubMedGoogle Scholar
  126. Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, et al (1988) Gammaaminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 111: 785–799PubMedGoogle Scholar
  127. Mann DMA, Lincoln J, Yates PO, Stamp JE, Toper S (1980) Changes in the monoamine containing neurones of the human CNS in senile dementia. Br J Psychiatry 136: 533–541PubMedGoogle Scholar
  128. Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multiinfarct dementias. J Neurol 45: 113–119Google Scholar
  129. Mantle D, Lauffart B, Perry EK, Perry RH (1989) Comparison of major cortical aminopeptidase activity in normal brain and brain from patients with Alzheimer’s disease. J Neurol Sci 89: 227–234PubMedGoogle Scholar
  130. Marcusson JO, Alafuzoff I, Bäckström IT, Ericson E, Gottfries CG, et al (1987) 5Hydroxytryptamine-sensitive 3H-imipramine binding of protein nature in the human brain. II. Effect of normal aging and dementia disorders. Brain Res 425: 137–145Google Scholar
  131. Marklund SL, Adolfsson R, Gottfries CG, Winblad B (1985) Superoxid dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325PubMedGoogle Scholar
  132. Mazurek MF, Beal MF, Bird ED, Martin JB (1986) Vasopressin in Alzheimer’s disease: a study of postmortem brain concentrations. Ann Neurol 20: 665–670PubMedGoogle Scholar
  133. Mazurek M, Beal MF, Bird E, Martin J (1987) Oxytocin in Alzheimer’s disease: postmortem brain levels. Neurology 3: 1001–1003Google Scholar
  134. McGeer EG, Singh E, McGeer PL (1987) Sodium-dependent glutamate binding in senile dementia. Neurobiol Aging: 219–223Google Scholar
  135. McGeer EG, Singh EA, McGeer PL (1987) Gamma-glutamyltransferase: normal cortical levels in Alzheimer disease. Alzheimer Dis Assoc Disord 1: 38–42PubMedGoogle Scholar
  136. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285–1291PubMedGoogle Scholar
  137. McGeer E, Singh EA, McGeer P (1988) Peripheral-type benzodiazepine binding in Alzheimer disease. Alzheimer Dis Assoc Disord 2: 331–336PubMedGoogle Scholar
  138. Meana JJ, Barturen F, Garro MA, Garcia-Sevilla JA (1992) Decreased density of presynaptic alpha-2-adrenoceptors in postmortem brains of patients with Alzheimer’s disease. J Neurochem 58: 1896–1904PubMedGoogle Scholar
  139. Middlemiss DN, Palmer AM, Edel N, Bowen DM (1986) Binding of the novel serotonin agonist 8-hydroxy-2-(di-n-propylamino) tetralin in normal and Alzheimer brain. J Neurochem 46: 993–996PubMedGoogle Scholar
  140. Moroni F, Lombardi G, Robitaille Y, Etienne P (1986) Senile dementia and Alzheimer’s disease: lack of changes of the cortical content of quinolinic acid. Neurobiol Aging 7: 249–253PubMedGoogle Scholar
  141. Mouradian MM, Contreras PC, Monahan JB, Chase TN (1988) 3H-MK-801 binding in Alzheimer’s disease. Neurosci Lett 93: 225–230Google Scholar
  142. Nazarali AJ, Reynolds GP (1992) Monoamine neurotransmitters and their metabolites in brain regions in Alzheimer’s disease: a postmortem study. Cell Mol Neurobiol 12: 581–587PubMedGoogle Scholar
  143. Nemeroff CB, Kizer JS, Reynolds GP, Bissette G (1989) Neuropeptides in Alzheimer’s disease: a postmortem study. Regul Pept 25: 123–130PubMedGoogle Scholar
  144. Nordberg A, Winblad B (1981) Cholinergic receptors in human hippocampus — regional distribution and variance with age. Life Sci 29: 1937–1944PubMedGoogle Scholar
  145. Nordberg A, Winblad B (1986) Brain nicotinic and muscarinic receptors in normal aging and dementia. In: Winblad B (ed) Alzheimer’s and Parkinson’s disease. Strategies for research and development, vol 29. Plenum Press, New York, pp 95–108Google Scholar
  146. Nordberg A, Winblad B (1986) Reduced number of 3H-nicotine and 3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72: 115–119PubMedGoogle Scholar
  147. Nordberg A, Adolfsson R, Marcusson J, Winblad B (1982) Cholinergic receptors in the hippocampus in normal aging and dementia of Alzheimer type. In: Giacobini E, et al (ed) The aging brain: cellular and molecular mechanisms of aging in the nervous system. Raven Press, New York, pp 231–245Google Scholar
  148. Nordberg A, Larsson C, Adolfsson R, Alafuzoff I, Winblad B (1983) Muscarinic receptor compensation in hippocampus of Alzheimer patients. J Neural Transm 56: 13–19PubMedGoogle Scholar
  149. Nordberg A, Alafuzoff I, Winblad B (1986) Muscarinic receptor subtypes in hippocampus in Alzheimer’s disease and mixed dementia type. Neurosci Lett 70: 160–164PubMedGoogle Scholar
  150. Nordberg A, Adem A, Hardy J, Winblad B (1988) Change in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci Lett 86: 317–321PubMedGoogle Scholar
  151. Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31: 103–111PubMedGoogle Scholar
  152. Nyberg P, Adolfsson R, Hardy JA, Nordberg A, Wester P, et al (1985) Catecholamine topochemistry in human basal ganglia. Comparison between normal and Alzheimer brains. Brain Res 333: 139–142PubMedGoogle Scholar
  153. O’Neill C, Fowler CJ, Winblad B (1989) Alpha 1-adrenergic receptor binding sites in post-mortal human cerebral microvessel preparations: preservation in multi-infarct dementia and dementia of Alzheimer type. J Neural Transm [P-DSect] 1: 303–310Google Scholar
  154. Ogane N, Giacobini E, Struble R (1992) Differential inhibition of acetylcholinesterase molecular forms in normal and Alzheimer disease brain. Brain Res 589: 307–312PubMedGoogle Scholar
  155. Ohm T, Bohl J, Lemmer B (1989) Reduced cAMP-signal transduction in postmortem hippocampus of demented old people. Alzheimer Dis Related Disord 0: 501–509Google Scholar
  156. Ohm TG, Bohl J, Lemmer B (1991) Reduced basal and stimulated (isoprenaline, Gpp(NH)p, forskolin) adenylate cyclase activity in Alzheimer’s disease correlated with histopathological changes. Brain Res 540: 229–236PubMedGoogle Scholar
  157. Oreland L, Gottfries CG (1986) Brain and brain monoamine oxidase in aging and in dementia of Alzheimer’s type. Prog Neuropsychopharmacol Biol Psychiatry 10: 533–540PubMedGoogle Scholar
  158. Oreland L, Adolfsson R, Fowler CJ, Gottfries CG, Wiberg A, et al (1981) Increased activity of monoamine oxidase in dementia of Alzheimer type. In: Perris C, Struwe G, Jansson B (eds) Biological psychiatry. Elsevier/North Holland Biochemical Press, Amsterdam, pp 973–976Google Scholar
  159. Palmer AM, Bowen DM (1984) 5-Hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid and caudate nucleus of histologically verified examples of Alzheimer’s disease. Biochem Soc Trans 13: 167–168Google Scholar
  160. Palmer AM, Francis PT, Bowen DM (1986) The stability of 5-hydroxyindolacetic acid and noradrenaline in normal and Alzheimer postmortem brain. Biochem Soc Trans 14: 608–6090Google Scholar
  161. Palmer AM, Procter AW, Stratmann GC, Bowen DM (1986) Excitatory amino acid-releasing and cholinergic neurones in Alzheimer’s disease. Neurosci Lett 66: 199–204PubMedGoogle Scholar
  162. Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401: 231–238PubMedGoogle Scholar
  163. Parks KM, Sugar JE, Haroutunian V, Bierer L, Perl D, et al (1991) Reduced in vitro phosphorylation of synapsin I (site 1) in Alzheimer’s disease postmortem tissues. Mol Brain Res 9: 125–134PubMedGoogle Scholar
  164. Pearce BR, Bowen DM (1984) 3H-Kainic acid binding and choline acetyltransferase activity in Alzheimer’s dementia. Brain Res 310: 376–378Google Scholar
  165. Pearce BR, Palmer AM, Bowen DM, Wilcock GK, Esiri MM, et al (1984) Neurotransmitter dysfunction and atrophy of the caudate nucleus in Alzheimer’s disease. Neurochem Pathol 2: 221–232PubMedGoogle Scholar
  166. Perdahl E, Adolfsson R, Alafuzoff I, Albert KA, Nestler EJ, et al (1984) Synapsin I (Protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia. J Neural Transm 60: 133–141PubMedGoogle Scholar
  167. Perry E, Perry R (1980) The cholinergic system in Alzheimer’s disease. Biochem Dementia 10: 135–183Google Scholar
  168. Perry E, Perry R, Tomlinson BE, Blessed G, Gibson P (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic compartment of pyruvate dehydrogenase. Neurosci Lett 18: 105–110PubMedGoogle Scholar
  169. Perry E, Tomlinson BE, Blessed G, Perry RH, Cross AJ, et al (1981) Noradrenergic and cholinergic systems in senile dementia of Alzheimer type. Lancet: 149Google Scholar
  170. Perry E, Marshall E, Perry R, Irving D, Smith CJ, et al (1990) Cholinergic and dopaminergic activities in senile dementia of Lewy Body Type Alzheimer Dis Assoc Disord 4: 87–95Google Scholar
  171. Perry E, Marshall E, Kerwin J, Smith C, Jabeen S, et al (1990) Evidence of a monoaminergic-cholinergic imbalance related to visual hallucinations in Lewy Body Dementia. J Neurochem 55: 1454–1456PubMedGoogle Scholar
  172. Perry E, Irving D, Perry RH (1991) Cholinergic controversies. Letters to the editor. Trends Neurosci 14: 483PubMedGoogle Scholar
  173. Perry EK, Blessed G, Tomlinson BE, Perry RH, Crow TJ, et al (1981) Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 2: 251–256PubMedGoogle Scholar
  174. Perry EK, Tomlinson BE, Blessed G, Perry RH, Cross AJ, et al (1981) Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease. J Neurol Sci 51: 279–287PubMedGoogle Scholar
  175. Perry EK, Perry RH, Candy JM, Fairbairn AF, Blessed G, et al (1984) Cortical serotonin Neurochemistry of dementias 97 S2 receptor binding abnormalities in patients with Alzheimer’s disease: comparisons with Parkinson’s disease. Neurosci Lett 51: 353–357PubMedGoogle Scholar
  176. Perry EK, Perry RH, Smith CJ, Dick DJ, Candy JM, et al (1987) Nicotinic receptor abnormalities in Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry 50: 806–809PubMedGoogle Scholar
  177. Perry EK, Smith CJ, Court JA, Perry RH (1990) Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J Neural Transm [PD-Sect] 2: 149–158Google Scholar
  178. Perry RH, Dockray GJ, Dimaline R, Perry EK, Blessed G, et al (1981) Neuropeptides in Alzheimer’s disease, depression and schizophrenia. J Neurol Sci 51: 465–472PubMedGoogle Scholar
  179. Perry TL, Yong VW, Bergeron C, Hansen S, Jones K (1987) Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer’s disease. Ann Neurol 21: 331–336PubMedGoogle Scholar
  180. Procter AW, Palmer AM, Bowen DM, Murphy E, Neary D (1987) Glutamatergic denervation in Alzheimer’s disease — A cautionary note. J Neurol Neurosurg Psychiatry 50: 825PubMedGoogle Scholar
  181. Procter AW, Lowe SL, Palmer AM, Francis PT, Esiri M, et al (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 84: 125–140PubMedGoogle Scholar
  182. Procter AW, Palmer AM, Francis PT, Lowe SL, Neary D, et al (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50: 790–802PubMedGoogle Scholar
  183. Procter AW, Stirling JM, Stratmann GC, Cross AJ, Bowen DM (1989) Loss of glycine-dependent radioligand binding to the N-methyl-#NAME? Alzheimer’s disease. Neurosci Lett 10: 62–66Google Scholar
  184. Procter AW, Wong EHF, Stratmann GC, Lowe SL, Bowen DM (1989) Reduced glycine stimulation of (3H)-MK-801 binding in Alzheimer’s disease. J Neurochem 53: 698–704PubMedGoogle Scholar
  185. Quirion R, Martel JC, Robitaille Y, Etienne P (1986) Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type. Can J Neurol Sci 13: 503–510PubMedGoogle Scholar
  186. Quirion R, Aubert I, Lapchak P, Schaum R, Teolis S, et al (1989) Muscarinic receptor subtypes in human neurodegenerative disorders: focus on Alzheimer’s disease. Trends Pharmacol Sci 10: 80–84Google Scholar
  187. Reinikainen KJ, Riekkinen PJ, Jolkkonen J, Kosma VM, Soininen H (1987) Decreased somatostatin-like immunoreactivity in cerebral cortex and cerebrospinal fluid in Alzheimer’s disease. Brain Res 402: 103–108PubMedGoogle Scholar
  188. Reinikainen KJ, Riekkinen PJ, Halonen T, Laakso M (1987) Decreased muscarinic receptor binding in cerebral cortex and hippocampus in Alzheimer’s disease. Life Sci 41: 453–461PubMedGoogle Scholar
  189. Reinikainen KJ, Paljärvi L, Halonen T, Malminen O, Kosma VM, et al (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer’s disease. Neurobiol Aging 9: 245–252PubMedGoogle Scholar
  190. Reinikainen KJ, Riekkinen PJ, Paljärvi L, Soininen H, Hekala EL, et al (1988) Cholinergic deficit in Alzheimer’s disease: a study based on CSF and autopsy data. Neurochem Res 13: 135–146PubMedGoogle Scholar
  191. Reinikainen KJ, Paljärvi L, Huuskonen M, Soininen H, Laakso M, et al (1988) A postmortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci 84: 101–116PubMedGoogle Scholar
  192. Reisine TD, Pedigo NW, Meiners B, Iqbal K, Yamamura HI (1980) Alzheimer’s disease: studies on neurochemical alterations in the brain. In: Amaducci L, et al (eds) Aging of the brain and dementia. Raven Press, New York, pp 147–150Google Scholar
  193. Reynolds GP, Arnold L, Rossor MN, Iversen LL, Mountjoy CQ, et al (1983) Reduced binding of (3H) Ketaserin to 5-HT, receptors in senile dementia of the Alzheimer type. Neurosci Lett 44: 47–51Google Scholar
  194. Richter J, Perry E, Tomlinson B (1980) Acetylcholine and choline levels in postmortem human brain tissue: preliminary observations in Alzheimer’s disease. Life Sci 26: 1683–1689PubMedGoogle Scholar
  195. Riederer P, Jellinger K (1982) Morphological and biochemical changes in the aging brain: pathophysiological and possible therapeutic consequences. Exp Brain Res [Suppl] 5: 158–166Google Scholar
  196. Riekkinen PJ, Soininen H, Sirviö J, Reinikainen K, Helkala EL, et al (1987) Dementia without cholinergic deficit. Gerontol 33: 268–272Google Scholar
  197. Rinne JO (1987) Muscarinic and dopaminergic receptors in the aging human brain. Brain Res 404: 162–168PubMedGoogle Scholar
  198. Rinne JO, Rinne JK, Laakso K, Paljärvi L, Rinne UK (1984) Reduction in muscarinic receptor binding in limbic areas of Alzheimer brain. J Neurol Neurosurg Psychiatry 47: 651–653PubMedGoogle Scholar
  199. Rinne JO, Laakso K, Lönnberg P, Mölsö P, Paljörvi L, et al (1985) Brain muscarinic receptors in senile dementia. Brain Res 336: 19–25PubMedGoogle Scholar
  200. Rinne JO, Säkö E, Paljärvi L, Mölsö PK, Rinne UK (1986) Brain dopamine D-2 receptor in senile dementia. J Neural Transm 65: 51–62PubMedGoogle Scholar
  201. Rinne JO, Säkö E, Paljärvi L, Mölsö PK, Rinne UK (1986) Brain dopamine D-1 receptors in senile dementia. J Neurol Sci 73: 219–230PubMedGoogle Scholar
  202. Rinne JO, Säkö E, Paljärvi L, Mölsö PK, Rinne UK (1987) A comparison of brain choline acetyltransferase activity in Alzheimer’s disease, multiinfarct dementia, and combined dementia. J Neural Transm 73: 121–128Google Scholar
  203. Rinne JO, Lönneberg P, Marjamäki P, Rinne UK (1989) Brain muscarinic receptor subtypes are differently affected in Alzheimer’s disease and Parkinson’s disease. Brain Res 483: 402–406PubMedGoogle Scholar
  204. Rinne JO, Myllykylä T, Lönnberg P, Marjamäki P (1991) A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 547: 167–170PubMedGoogle Scholar
  205. Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980) Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 20: 373–377PubMedGoogle Scholar
  206. Rossor M, Fahrenkrug J, Emson P, Mountjoy C, Iverson L, et al (1980) Reduced cortical choline acetyltransferase activity in senile dementia of Alzheimer type is not accompanied by change in vasoactive intestinal polypeptide. Brain Res 201: 249–253PubMedGoogle Scholar
  207. Rossor MN, Iversen LL, Mountjoy CQ, Roth M, et al (1980) Arginine vasopressin and choline acetyltransferase in brains of patients with Alzheimer type senile dementia. Lancet: 1367–1368Google Scholar
  208. Rossor MN, Rehfeld JF, Emson PC, Mountjoy CQ, Roth M, et al (1981) Normal cortical concentration of cholecystokinin-like immunoreactivity with reduced choline acetyltransferase activity in senile dementia of Alzheimer type. Life Sci 29: 405–410PubMedGoogle Scholar
  209. Rossor MN, Svendsen C, Hunt SP, Mountjoy CQ, Roth M, et al (1982) The substantia innominata in Alzheimer’s disease: an histochemical and biochemical study of cholineregic marker enzymes. Neurosci Lett 28: 217–222PubMedGoogle Scholar
  210. Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1982) Neurotransmitters of the cerebral cortex in senile dementia of Alzheimer type. Exp Brain Res 5: 153–157PubMedGoogle Scholar
  211. Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, et al (1982) A postmortem study of the cholinergic and GABA systems in senile dementia. Brain 105: 313–330PubMedGoogle Scholar
  212. Rossor MN, Emson PC, Iversen LL, Mountjoy CQ, Roth M, et al (1982) Neuropeptides and neurotransmitters in cerebral cortex in Alzheimer’s disease. In: Corkin S, et al (eds) Alzheimer’s disease: a report of progress. Raven Press, New York, pp 15–24 (Aging, vol 19)Google Scholar
  213. Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288: 961–964Google Scholar
  214. Rossor MN, Emson PC, Iversen LL (1984) Patterns of neuropeptide deficits in Alzheimer’s disease. In: Wurtman RJ (ed) Alzheimer’s disease: advances in basic research and therapies. Raven Press, New York, pp 29–38Google Scholar
  215. Rylett RJ, Ball MJ, Colhoun EH (1983) Evidence for high affinity transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 289: 169–175PubMedGoogle Scholar
  216. Sakurada T, Alafuzoff I, Winblad B, Nordberg A (1990) Substance P-like immunoractivity, choline acetyltransferase activity and cholinergic muscarinic receptors in Alzheimer’s disease and multi-infarct dementia. Brain Res 521: 329–332PubMedGoogle Scholar
  217. Sanders DJ, Zahedi-Asl S, Marr AP (1982) Glucagon and CCK in human brain: controls and patients with senile dementia of Alzheimer type. Prog Brain Res 55: 465–471PubMedGoogle Scholar
  218. Sasaki H, Muramoto O, Kanazawa I, Arai H (1986) Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol 19: 263–269PubMedGoogle Scholar
  219. Sawada M, Hirata Y, Arai H, Iizuka R, Nagatsu T (1987) Tyrosine hydroxylase, trytophan hydroxylase, biopterin, and neopterin in brains of normal controls and patients with senile dementia of the Alzheimer type. J Neurochem 4: 760–764Google Scholar
  220. Schegg K, Nielsen S, Zweig R, Peacock J (1989) Decrease in membrane-bound G4 form of acetylcholinesterase in postmortem Alzheimer brain. In• Alzheimer’s disease and related disorders. Alan R Liss, New York, pp 437–452Google Scholar
  221. Schotte A, Maloteaux JM, Laduron PM (1983) Characterization and regional distribution of serotonin S2 receptors in human brain. Brain Res 276: 231–235PubMedGoogle Scholar
  222. Schwarcz R, Whetsell WO (1982) Post-mortem high affinity glutamate uptake in human brain. Neuroscience 7: 1771–1778PubMedGoogle Scholar
  223. Severson JA, Marcusson J, Winblad B, Finch CE (1982) Age-related loss of dopaminergic binding sites in human basal ganglia. J Neurosci 39: 1623–1631Google Scholar
  224. Sherif F, Gottfries CG, Alafuzoff I, Oreland L (1992) Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. J Neural Transm [PD-Sect] 4: 227–240Google Scholar
  225. Sheu KFR, Kim YT, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann Neurol 17: 444–449PubMedGoogle Scholar
  226. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986) Biochemical characterization of alpha-adrenergic receptors in human brain and changes in Alzheimer-type dementia. J Neurochem 47: 1294–1301Google Scholar
  227. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986) Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem 46: 288–293PubMedGoogle Scholar
  228. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1987) Changes in ß-adrenergic receptor subtypes in Alzheimer-type dementia. J Neurochem 48: 1215–1221PubMedGoogle Scholar
  229. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1988) Changes in benzodiazepine receptors in Alzheimer-type dementia. Ann Neurol 23: 404–406PubMedGoogle Scholar
  230. Simpson MDC, Royston MC, Cross AJ, Slater P, Mann DMA, et al (1987) Brain regional 3H-D-aspartate and 3H-TCP binding in Alzheimer’s disease and Down’s syndrome. Br J Pharmacol [Suppl] 92: 609Google Scholar
  231. Simpson MDC, Cross AJ, Slater P, Deakin JFW (1988) Loss of cortical GABA uptake sites in Alzheimer’s disease. J Neural Transm 71: 219–226PubMedGoogle Scholar
  232. Simpson MDC, Royston MC, Deakin JFW, Cross AJ, Mann DMA, et al (1988) Regional changes in 3H-D-aspartate and 3H-TCP binding sites in Alzheimer’s disease brains. Brain Res 462: 76–82PubMedGoogle Scholar
  233. Smith CJ, Perry EK, Perry RH, Fairbairn AF, Birdsall NJM (1987) Guanine nucleotide modulation of muscarinic cholinergic receptor binding in postmortem human brain — a preliminary study in Alzheimer’s disease. Neurosci Lett 82: 227–232PubMedGoogle Scholar
  234. Smith CJ, Perry EK, Perry RH, Candy JM, Johnson M, et al (1988) Muscarinic cholinergic receptor subtypes in hippocampus in human cognitive disorders. J Neurochem 50: 847–856PubMedGoogle Scholar
  235. Sofic E, Halket J, Przyborowska A, Riederer P, Beckmann H, et al (1989) Brain quinolinic acid in Alzheimer’s dementia. Eur Arch Psychiatr Neurol Sci 239: 177–179Google Scholar
  236. Sorbi S, Antuono P, Amaducci L (1980) Choline acetyltransferase and acetylcholinesterase abnormalities in senile dementia: importance of biochemical measurements in human post-mortem brain specimens. Ital J Neurol Sci 2: 75–83Google Scholar
  237. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13: 72–78PubMedGoogle Scholar
  238. Sparks DL, Slevin JT (1985) Determination of tyrosine, tryptophan and their metabolic derivitives by HPLC-electrochemical detection: application to postmortem samples from patients with Parkinson’s and Alzheimer’s disease. Life Sci 36: 449–457PubMedGoogle Scholar
  239. Stokes CE, Hawthorne JN (1987) Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J Neurochem 48: 1018–1021PubMedGoogle Scholar
  240. Sugaya K, Giacobini E, Chiappinelli VA (1990) Nicotine acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer’s disease. J Neurosci Res 27: 349–359PubMedGoogle Scholar
  241. Tamminga CA, Foster NL, Chase TN (1985) Reduced brain somatostatin levels in Alzheimer’s disease. N Engl J Med 313: 1294–1295PubMedGoogle Scholar
  242. Tamminga CA, Foster NL, Fedio P, Bird ED, Chase TN (1987) Alzheimer’s disease: low cerebral somatostatin levels correlate with impaired cognitive function and cortical metabolism. Neurology 37: 161–165PubMedGoogle Scholar
  243. Tarbit I, Perry EK, Perry RH, Blessed G, Tomlinson BE (1980) Hippocampal free amino acids in Alzheimer’s disease. J Neurochem 35: 1246–1249PubMedGoogle Scholar
  244. Trocewicz J, Oka K, Nagatsu T, Nagastsu I, Iizuka R, et al (1982) Phenylethanolamine Nmethyltransferase activity in human brains Biochem Med 27: 317–324Google Scholar
  245. Unden A, Meyerson B, Winblad B, Sachs C, Bartfai T (1983) Postmortem changes in binding to the muscarinic receptor from human cerebral cortex. J Neurochem 41: 102–106PubMedGoogle Scholar
  246. Vanderheyden P, Ebinger G, Dierckx R, Vauquelin G (1987) Muscarinic cholinergic receptor subtypes in normal human brain and Alzheimer’s presenile dementia. J Neurol Sci 82: 257–269PubMedGoogle Scholar
  247. Waller S, Ball M, Reynolds M, London E (1986) Muscarinic binding and choline scetyltransferase in postmortem brains of demented patients. Can J Neurol Sci 13: 528–532PubMedGoogle Scholar
  248. Wallin A, Alafuzoff I, Carlsson A, Eckernäs SA, Gottfries CG, et al (1989) Neurotransmitter deficits in a non-multi-infarct category of vascular dementia. Acta Neurol Scand 79: 397–406PubMedGoogle Scholar
  249. Wang JX, Roeske WR, Mei L, Wang W, Perry E, et al (1987) Nicotinic and muscarinic M2 receptor alteration in the cerebral cortex of patients with senile dementia of the Alzheimer type (SDAT). In: Rand MJ, Raper C (eds) Excerpta Medica 750 Pharmacology. Elsevier Science Publ, Amsterdam, pp 83–86Google Scholar
  250. Weber S, Louis RB, Trombley L, Bissette G, Davies P, et al (1992) Metabolic half-life of somatostatin and peptidase activities are altered in Alzheimer’s disease. J Gerontol 47: 18–25Google Scholar
  251. Weiler R, Lassmann H, Fischer P, Jellinger K, Winkler H (1990) A high ratio of chromogranin A to synaptin/synaptophysin is a common feature of brains in Alzheimer and Pick disease. FEBS Lett 263: 337–339PubMedGoogle Scholar
  252. Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, et al (1986) Nicotinic acetylcholine binding in Alzheimer’s disease. Brain Res 371: 146–151PubMedGoogle Scholar
  253. Whitehouse PJ, Vale WW, Zweig RM, Singer HS, Mayeux R, et al (1987) Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer’s disease, Parkinson’s disease, and progressive supranuclear palsy. Neurology 37: 905–909PubMedGoogle Scholar
  254. Whitehouse PJ, Martino AM, Wagster MV, Price DL, Mayeux R, et al (1988) Reductions in 3H-nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease. An autoradiographic study. Neurology 38: 720–723PubMedGoogle Scholar
  255. Whitford C, Candy J, Edwardson J, Perry R (1988) Cortical somatostatinrgic system not affected in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 86: 13–18PubMedGoogle Scholar
  256. Wilcock GK (1983) The temporal lobe in dementia of Alzheimer’s type. Gerontology 29: 320–324PubMedGoogle Scholar
  257. Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1982) Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57: 407–417PubMedGoogle Scholar
  258. Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1983) The nucleus basalis in Alzheimer’s disease: cell counts and cortical biochemistry. Neuropathol Appl Neurobiol 9: 175–179PubMedGoogle Scholar
  259. Winblad B, Adolfsson R, Carlsson A, Gottfries CG, Oreland L (1981) Brain biogenic amines in dementia of Alzheimer type. In: Penis C, Struwe G, Jansson B (eds) Biol psychiatry. Elsevier/North Holland Biochemical Press, Amsterdam, pp 965–968Google Scholar
  260. Winblad B, Adolfsson R, Carlsson A, Gottfries CG (1982) Biogenic amines in brains of patients with Alzheimer’s disease. Alz Dis A Report Prog 19: 25–33Google Scholar
  261. Wolfe LS, Ng Ying Kin NMK, Palo J, Haltia M (1982) Raised levels of cerebral cortex dolichols in Alzheimer’s disease. Lancet 10: 99Google Scholar
  262. Wood PL, Etienne P, Lal S, Nair NPV, Finlayson MH, et al (1983) A postmortem comparison of the cortical cholinergic system in Alzheimer’s disease and Pick’s disease. J Neurol Sci 62: 211–217PubMedGoogle Scholar
  263. Yates CM, Simpson J, Maloney AFJ, Gordon A, Reid AH (1980) Alzheimer-like cholinergic deficiency in Down syndrome. Lancet 979Google Scholar
  264. Yates CM, Ritchie IM, Simpson J, et al (1981) Noradrenaline in Alzheimer-type dementia and Down syndrome. Lancet: 39–40Google Scholar
  265. Yates CM, Harmar AJ, Rosie R, Sheward J, et al (1983) Thyreotropin-releasing hormone, luteinizing hormone-releasing hormone and substance P immunoreactivity in post-mortem brain from cases of Alzheimer-type dementia and Down’s syndrome. Brain Res 258: 45–52Google Scholar
  266. Yates CM, Simpson J, Gordon A, Maloney AFJ, Allison Y, et al (1983) Catecholamines and cholinergic enzymes in presenile and senile Alzheimer-type dementia and Down’s syndrome. Brain Res 280: 119–126PubMedGoogle Scholar
  267. Yates CM, Simpson J, Gordon A (1986) Regional brain 5-hydroxytryptamine levels are reduced in senile Down’s syndrome as in Alzheimer’s disease. Neurosci Lett 65: 189–192PubMedGoogle Scholar
  268. Yates CM, Butterworth J, Gordon A (1989) Gamma-glutamyl transpeptidase in dementia. Neurobiol Aging 10: 107–108PubMedGoogle Scholar
  269. Yates CM, Simpson J, Gordon A, Christie JE (1989) Cholinergic enzymes in the spinal cord in Alzheimer-type dementia. J Neural Transm [PD-Sect] 1: 311–315Google Scholar
  270. Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 5: 1624–1630Google Scholar
  271. Younkin SG, Goodridge B, Locket G, Katz J, Nafziger D, et al (1986) Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed Proc 45: 2982–2988PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • W. Gsell
    • 1
  • I. Strein
    • 1
  • P. Riederer
    • 1
  1. 1.Clinical Neurochemistry, Department of PsychiatryUniversity of WürzburgWürzburgFederal Republic of Germany

Personalised recommendations