Vascular dementia: perfusional and metabolic disturbances and effects of therapy

  • R. Mielke
  • J. Kessler
  • B. Szelies
  • K. Herholz
  • K. Wienhard
  • W.-D. Heiss
Part of the Journal of Neural Transmission Supplement book series (NEURAL SUPPL, volume 47)


Positron emission tomography (PET) has elucidated basic pathophysiological mechanism that produce the cognitive decline in vascular dementia (VD). The typical pattern of glucose metabolism seen in VD with scattered areas of focal cortical and subcortical hypometabolism differs from that in AD with marked hypometabolism affecting the association areas. The total volume of metabolically inactive tissue is significantly related to severity of dementia. Rather than the quantity of tissue destruction, the critical effect may be the quantity of cortical hypometabolism caused by subcortically induced disconnection. Studies with HMPAO SPECT have shown focal deficits in VD and AD patients that are comparable to those seen with FDG PET. In mildly demented patients performance for the classification AD versus VD is much better by PET because it might be more sensitive for imaging small functional pathological changes. A longitudinal analysis of rCMRGl in VD showed that the progression of dementia can be delayed by the adenosine uptake blocker propentofylline and that neuropsychological and metabolic changes are closely related.


Positron Emission Tomography Vascular Dementia Metabolic Ratio Cereb Blood Flow Left Motor Cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1981) The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multiinfarct dementia. Arch Neurol 40: 711–714CrossRefGoogle Scholar
  2. DeLeo J, Toth L, Schubert P, Rudolphi K, Kreutzberg GW (1987) Ischemia-induced neuronal cell death, calcium accumulation, and glial response in the hippocampus of the mongolian gerbil and protection by propentofylline (HWA 285). J Cereb Blood Flow Metab 7: 745–751PubMedCrossRefGoogle Scholar
  3. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental State: a practical method for grading the cognitive status of patients for the clinician. J Psychiatr Res 12: 189–198PubMedCrossRefGoogle Scholar
  4. Frackowiak RSJ, Pozzilli C, Legg NJ, du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. Brain 104: 753–778PubMedCrossRefGoogle Scholar
  5. Gemmel HG, Sharp PF, Besson JAO, Crawford JR, Ebmeier KP, Davidson J, Smith FW (1987) Differential diagnosis in dementia using cerebral blood flow agent TC-99m HM-PAO: a SPECT study. J Comput Assist Tomogr 11: 398–402CrossRefGoogle Scholar
  6. Gemmell HG, Sharp PF, Besson JAO, Ebmeier KP, Smith FW (1988) A comparison of TC-99m HM-PAO and I-123 IMP cerebral SPECT images in Alzheimer’s disease and multi-infarct dementia. Eur J Nucl Med 14: 463–466PubMedCrossRefGoogle Scholar
  7. Gemmel HG, Evans NTS, Besson JAO, Roeda D, Davidson J, Dodd MG, Sharp PF, Smith FW, Crawford JR, Newton RH, Kulkarni V, Mallard JR (1990) Regional cerebral blood flow imaging: a quantitative comparison of Technetium-99mHMPAO SPECT with C15O2 PET. J Nucl Med 31: 1595–1600Google Scholar
  8. Gibbs JM, Frackowiak RSJ, Legg NJ (1986) Regional cerebral blood flow and oxygen metabolism in dementia due to vascular disease. Gerontology 32 [Suppl 1]: 84–86PubMedCrossRefGoogle Scholar
  9. Hachinski VC, Iliff LD, Zilhka E, DuBoulay GH, McAllister VL, Marshall J, Russell RWR, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32: 632–637PubMedCrossRefGoogle Scholar
  10. Heiss WD, Ilsen HW, Wagner R, Pawlik G, Wienhard K, Eriksson L (1983) Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York Tokyo, pp 162–168Google Scholar
  11. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, Wienhard K (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12: 193–203PubMedCrossRefGoogle Scholar
  12. Heiss WD, Mielke R, Kessler J, Ghaemi M, Szelies B, Kittner B, Herholz K, Pietrzyk U (1995) Longitudinal study of propentofyllin in vascular dementia. J Cereb Blood Flow Metab 15: 106Google Scholar
  13. Herholz K, Adams R, Kessler J, Szelies B, Grond M, Heiss WD (1990) Criteria for the diagnosis of Alzheimer’s disease with positron emission tomography. Dementia 1: 156–164Google Scholar
  14. Kase CS (1991) Epidemiology of multi-infarct dementia. Alzheimer Dis Assoc Disord 5: 71–76PubMedCrossRefGoogle Scholar
  15. Kessler J, Schaaf A, Mielke R (1993) Fragmentierter Bildertest — ein Wahrnehmungs-und Gedächtnistest. Hogrefe, Göttingen Bern Toronto SeattleGoogle Scholar
  16. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8: 47–60PubMedCrossRefGoogle Scholar
  17. Kuhl DE, Metter EJ, Riege WH, Hawkins RA, Mazziotta JC, Phelps DE, Kling AS (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 494–495Google Scholar
  18. Kuhl D, Metter E, Benson F, Ashford JW, Riege WH, Fujikawa DG, Markham CH, Mazziotta JC, Maltese A, Dorsey DA (1985) Similarities of cerebral glucose metabolism in Alzheimer’s and Parkinson’s dementia. J Cereb Blood Flow Metab 5: 169–170Google Scholar
  19. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 19: 939–944Google Scholar
  20. Messa C, Perani D, Lucignani G, Zenorini A, Zito F, Rizzo G, Grassi F, Del Sole A, Franceschi M, Gilardi MC, Fazio F (1994) High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine-18FDG PET. J Nucl Med 35: 210–216PubMedGoogle Scholar
  21. Mielke R (1994) Pathophysiologie and Diagnostik von vaskulären Demenzen — Untersuchungen zur Hirndurchblutung and zum Hirnstoffwechsel. Thesis, KölnGoogle Scholar
  22. Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1992) Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol 49: 909–913PubMedCrossRefGoogle Scholar
  23. Mielke R, Pietrzyk U, Jacobs A, Fink GR, Ichimiya A, Kessler J, Herholz K, Heiss WD (1994) HMPAO SPECT and FDG PET in Alzheimer’s disease and vascular dementia: comparison of perfusion and metabolic pattern. Eur J Nucl Med 21: 1052–1060PubMedCrossRefGoogle Scholar
  24. Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5: 36–41PubMedGoogle Scholar
  25. Mielke R, Jacobs A, Kessler J, Pietrzyk U, Herholz K, Heiss WD (1995) Diagnostic accuracy of FDG PET and HMPAO SPECT for the differentiation between Alzheimer’s disease and vascular dementia depends on severity of disease. J Neurol 241: 35Google Scholar
  26. Neary D, Snowdon JS, Shields RA, Burjan AWI, Northen B, Macdermott N, Prescott MC, Testa HJ (1987) Single photon emission tomography using 99mTc-HM-PAO in the investigation of dementia. J Neurol Neurosurg Psychiatry 50: 1101–1109PubMedCrossRefGoogle Scholar
  27. Podreka I, Suess E, Goldenberg G, Steiner M, Brücke T, Müller CH, Lang W, Neirinckx RD, Deecke L (1987) Initial experience with Technetium-99m HM-PAO brain SPECT. J Nucl Med 28: 1657–1666PubMedGoogle Scholar
  28. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozzo JM, Brun A, Hofman A, Moody DM, O’Brien MD, Yamaguchi T, Grafman J, Drayer BP, Bennett DA, Fisher M, Ogata J, Kokmen E, Bermejo F, Wolf PA, Gorelick PB, Bick KL, Pajeau AK, Bell MA, DeCarli C, Culebras A, Korczyn AD, Bogousslaysky J, Hartmann A, Scheinberg P (1993) Vascular dementia: diagnostic criteria for research studies. Neurology 43: 250–260PubMedGoogle Scholar
  29. Sacquegna T, DeCarolis P, Daidone R, Dondi M (1988) Single-photon emission tomography with technetium Tc 99m hexamethylpropylene amine oxime in Binswanger’s disease. Arch Neurol 45: 603–604PubMedCrossRefGoogle Scholar
  30. Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A (1993) A population-based study of dementia in 86-year-olds. N Engl J Med 328: 153–158PubMedCrossRefGoogle Scholar
  31. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7: 331–356PubMedCrossRefGoogle Scholar
  32. Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11: 205–242PubMedCrossRefGoogle Scholar
  33. Weinstein HC, Haan J, van Royen EO, Derix MMA, Lanser JBK, van der Zant F, Dunnewold RJW, van Kroonenburgh MJPG, Pauwels EKJ, van der Velde EA, Hijdra A, Buruma OJS (1991) SPECT in the diagnosis of Alzheimer’s disease and multi-infarct dementia. Clin Neurol Neurosurg 93: 39–43PubMedCrossRefGoogle Scholar
  34. Weltgesundheitsorganisation (1991) Dilling H, Mombour W, Schmidt MH (eds) Internationale Klassifikation psychischer Störungen ICD 10Kp V (F). Klinisch-diagnostische Leitlinien. Huber, BernGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Mielke
    • 1
  • J. Kessler
    • 1
  • B. Szelies
    • 1
  • K. Herholz
    • 1
  • K. Wienhard
    • 1
  • W.-D. Heiss
    • 1
  1. 1.Max-Planck-Institut für Neurologische ForschungUniversitätsklinik für NeurologieKölnFederal Republic of Germany

Personalised recommendations