Functional imaging techniques in the diagnosis of non-Alzheimer dementias

  • D. J. Brooks
Part of the Journal of Neural Transmission Supplement book series (NEURAL SUPPL, volume 47)


Functional imaging (positron emission tomography — PET, single photon emission tomography — SPECT, magnetic resonance spectroscopy — MRS) enables regional cerebral function to be assessed in vivo in dementias. There are three basic approaches to examining the patterns of cerebral function associated with specific disorders: First, abnormalities in resting levels of regional cerebral metabolism and blood flow can be examined. Second, patients can be asked to perform cognitive tasks with a view to demonstrating aberrations in their pattern of cerebral activation. Third, resting dysfunction of brain pharmacology can be revealed. The bulk of the research on non-Alzheimer dementias has been performed with PET and SPECT and this review will concentrate on these two modalities.


Positron Emission Tomography Progressive Supranuclear Palsy Functional Imaging Technique Diffuse Lewy Body Disease Striatonigral Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin RL, Reiner A, Anderson KD, Penney JB, Young AB (1990) Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol 27: 357–365PubMedCrossRefGoogle Scholar
  2. Baron JC, Maziere B, Loc’h C, Cambon H, Sgouropoulos P, Bonnet M, Agid Y (1986) Loss of striatal (76Br)bromospiperone binding sites demonstrated by positron tomography in progressive supranuclear palsy. J Cereb Blood Flow Metab 6: 131–136PubMedCrossRefGoogle Scholar
  3. Bhatt MH, Snow BJ, Martin WRW, Peppard R, Calne DB (1991) Positron emission tomography in progressive supranuclear palsy. Arch Neurol 48: 389–391PubMedCrossRefGoogle Scholar
  4. Blin J, Baron JC, Dubois P, Pillon B, Cambon H, Cambier J, Agid Y (1990a) Positron emission tomography study in progressive supranuclear palsy. Arch Neurol 47: 747–752CrossRefGoogle Scholar
  5. Blin J, Vidhailhet M, Bonnet AM, Dubois P, Pillon P, Syrota A, Agid Y (1990b) PET study in corticobasal degeneration. Mov Disord 5 [Suppl 1]: 19Google Scholar
  6. Brooks DJ, Ibanez V, Sawle GV, Quinn N, Lees AJ, Mathias CJ, Bannister R, Marsden CD, Frackowiak RSJ (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Ann Neurol 28: 547–555PubMedCrossRefGoogle Scholar
  7. Brooks DJ, Ibanez V, Playford ED, Sawle GV, Leigh PN, Kocen RS, Harding AE, Marsden CD (1991) Presynaptic and postsynaptic striatal dopaminergic function in neuroacanthocytosis: a positron emission tomographic study. Ann Neurol 30: 166–171PubMedCrossRefGoogle Scholar
  8. Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, Lees AJ, Marsden CD, Bannister R, Frackowiak RSJ (1992) Striatal D2 receptor status in Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and PET. Ann Neurol 31: 184–192PubMedCrossRefGoogle Scholar
  9. Brücke T, Podreka I, Angelberger P, Wenger S, Topitz A, Kufferle B, Muller C, Deecke L (1991) Dopamine D2 receptor imaging with SPECT: studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab 11: 220–228PubMedCrossRefGoogle Scholar
  10. Burn DJ, Rinne JO, Quinn NP, Lees AJ, Marsden CD, Brooks DJ (1995) Striatal opioid receptor binding in Parkinson’s disease, striatonigral degeneration, and SteeleRichardson-Olszewski syndrome: an 11C-diprenorphine PET study. Brain 118: 951–958PubMedCrossRefGoogle Scholar
  11. Byrne E, Lennox G, Lowe J, Godwin-Austin RB (1989) Diffuse Lewy body disease: clinical features in 15 cases. J Neurol Neurosurg Psychiatry 52: 709–717PubMedCrossRefGoogle Scholar
  12. D’Antona R, Baron JC, Samson Y, Serdaru M, Viader F, Agid Y, Cambier J (1985) Subcortical dementia: frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain 108: 785–800PubMedCrossRefGoogle Scholar
  13. De Volder AG, Francard J, Laterre C, Dooms G, Bol A, Michel C, Goffinet AM (1989) Decreased glucose utilisation in the striatum and frontal lobe in probable striatonigral degeneration. Ann Neurol 26: 239–247PubMedCrossRefGoogle Scholar
  14. Dubinsky RM, Hallett M, Levey R, Di Chiro G (1989) Regional brain glucose metabolism in neuroacanthocytosis. Neurology 39: 1253–1255PubMedGoogle Scholar
  15. Eidelberg D, Dhawan V, Moeller JR, Sidtis JJ, Ginos JZ, Strother SC, Cederbaum J, Greene P, Fahn S, Powers JM, Rottenberg DA (1991) The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studies with positron emission tomography. J Neurol Neurosurg Psychiatry 54: 856–862PubMedCrossRefGoogle Scholar
  16. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, Chaly T, Robeson T, Margouleff D, Przedborski S, Fahn S (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14: 783–801PubMedCrossRefGoogle Scholar
  17. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301PubMedCrossRefGoogle Scholar
  18. Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA (1988) Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 24: 399–406PubMedCrossRefGoogle Scholar
  19. Foster NL, Gilman S, Berent S, Sima AAF, D’Amato C, Koeppe RA, Hicks SP (1992) Progressive subcortical gliosis and progressive supranuclear palsy can have similar clinical and PET abnormalities. J Neurol Neurosurg Psychiatry 55: 707–713PubMedCrossRefGoogle Scholar
  20. German DC, Manaya K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26: 507–514PubMedCrossRefGoogle Scholar
  21. Gibb WRG, Luthert P, Marsden CD (1989) Corticobasal degeneration. Brain 112: 1171–1192PubMedCrossRefGoogle Scholar
  22. Goffinet AM, De Volder AG, Gillain C, Rectem D, Bol A, Michel C, Cogneau M, Labar D, Laterre C (1989) Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy. Ann Neurol 25: 131–139PubMedCrossRefGoogle Scholar
  23. Goldberg G (1985) Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci 8: 567–616CrossRefGoogle Scholar
  24. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In: Plum F (ed) The nervous system: higher functions of the brain. American Physiology Society, Bethesda, pp 373–417Google Scholar
  25. Grafton ST, Mazziotta JC, Pahl JJ, St. George-Hyslop P, Haines JL, Gusella J, Hoffman, JM, Baxter LR, Phelps ME (1990) A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington’s disease. Ann Neurol 28: 614–621PubMedCrossRefGoogle Scholar
  26. Grafton ST, Mazziotta JC, Pahl JJ, St. George-Hyslop P, Haines JL, Gusella, J, Hoffman JM, Baxter LR, Phelps ME (1992) Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington’s disease. Arch Neurol 49: 1161–1167PubMedCrossRefGoogle Scholar
  27. Hagglund J, Aquilonius SM, Eckernas SA, Hartvig P, Lundquist H, Gullberg P, Langstrom B (1987) Dopamine receptor properties in Parkinson’s disease and Huntington’s chorea evaluated by positron emission tomography using IIC-Nmethyl-spiperone. Acta Neurol Scand 75: 87–94PubMedCrossRefGoogle Scholar
  28. Hayden MR, Martin WRW, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, Ammann W, Harrop R (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36: 888–894PubMedGoogle Scholar
  29. Hayden MR, Hewitt J, Martin WRW, Clark C, Amman A (1987) Studies in persons at risk for Huntington’s disease. N Engl J Med 317: 382–383CrossRefGoogle Scholar
  30. Hosokawa S, Ichiya Y, Kuwabara Y, Ayabe Z, Mitsuo K, Goto I, Kato M (1987) Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry 50: 1284–1287PubMedCrossRefGoogle Scholar
  31. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) The accuracy of the clinical diagnosis of Parkinson’s disease: a clinicopathological study of 100 cases. J Neurol Neurosurg Psychiatry 55: 181–184PubMedCrossRefGoogle Scholar
  32. Jackson JA, Jankovic J, Ford J (1983) Progressive supranuclear palsy: clinical features and response to treatment in 16 patients. Ann Neurol 13: 273–278PubMedCrossRefGoogle Scholar
  33. Jellinger K, Riederer P, Tomananga M (1980) Progressive supranuclear palsy: clinicopathological and biochemical studies. J Neural Transm [Suppl 16]: 111–128Google Scholar
  34. Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RSJ, Passingham RE, Brooks DJ (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32: 749–757PubMedCrossRefGoogle Scholar
  35. Kamo H, McGeer PL, Harrop R, McGeer EC, Calne DB, Martin WRW, Pate BD (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37: 439–445PubMedGoogle Scholar
  36. Kish SJ, Chang LJ, Mirchandani LJ, Shannak K, Hornykiewicz O (1985) Progressive supranuclear palsy: relationship between extrapyramidal disturbances, dementia, and brain neurotransmitter markers. Ann Neurol 18: 530–536PubMedCrossRefGoogle Scholar
  37. Kiyosawa M, Baron JC, Hamel E, Pappata S, Duverger D, Riche D, Mazoyer B, Naquet R, MacKenzie ET (1989) Time course of effects of unilateral lesions of the Nucleus Basalis of Meynert on glucose utilisation by the cerebral cortex. Positron emission tomography in baboons. Brain 112: 435–455PubMedCrossRefGoogle Scholar
  38. Kosaka K (1990) Diffuse Lewy body disease in Japan. J Neurol 237: 197–204PubMedCrossRefGoogle Scholar
  39. Kuhl DE, Metter EJ, Riege WH (1984a) metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scans. Ann Neurol 12: 425–434CrossRefGoogle Scholar
  40. Kuhl DE, Metter EJ, Riege WH (1984a) Patterns of local cerebral glucose utilisation determined in Parkinson’s disease by the 18F-fluorodeoxyglucose method. Ann Neurol 15: 419–424CrossRefGoogle Scholar
  41. Kuhl DE, Metter EJ, Riege WH, Markham CH (1984b) Patterns of cerebral glucose utilisation in Parkinson’s disease and Huntington’s disease. Ann Neurol 15 [Suppl]: S119–S125CrossRefGoogle Scholar
  42. Kuhl DE, Metter EJ, Benson DF, Ashford JW, Riege WH, Fujikawa DG, Markham CH, Mazziotta JC, Maltese A, Dorsey DA (1985) Similarities of cerebral glucose metabolism in Alzheimer’s and Parkinsonian dementia. J Cereb Blood Flow Metab 5: S169–S170 (Abstract)Google Scholar
  43. Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113: 1405–1423PubMedCrossRefGoogle Scholar
  44. Leenders KL, Frackowiak RSJ, Quinn N, Marsden CD (1986) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Mov Disord 1: 69–77PubMedCrossRefGoogle Scholar
  45. Leenders KL, Frackowiak RS, Lees AJ (1988) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and flurorodopa uptake measured by positron emission tomography. Brain 111: 615–630Google Scholar
  46. Maher ER, Lees AJ (1986) The clinical features and natural history of the SteeleRichardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 36: 1005–1008PubMedGoogle Scholar
  47. Martin JB, Gusella JF (1986) Huntington’s disease: pathogenesis and management. N Engl J Med 315: 1267–1276PubMedCrossRefGoogle Scholar
  48. McKeith I, Fairbairn A, Perry R, Thompson P, Perry E (1992) Neuroleptic sensitivity in patients with senile dementia of Lewy body type. BMJ 305: 673–678PubMedCrossRefGoogle Scholar
  49. Miletich RS, Chan T, Gillespie M, Di Chiro G, Stein S (1988) Contralateral basal ganglia metabolism is abnormal in hemiparkinsonian patients. An FDG-PET study. Neurology 38: S260Google Scholar
  50. Mushiake H, Inase M, Tanji J (1990) Selective coding of motor sequence in the supple- mentary motor area of the monkey cerebral cortex. Exp Brain Res 82: 208–210PubMedCrossRefGoogle Scholar
  51. Otsuka M, Ichiya Y, Hosokawa S, Kuwabara Y, Tahara T, Fukumura T, Kato M, Masuda K, Goto I (1991) Striatal blood flow, glucose metabolism, and 18F-dopa uptake: difference in Parkinson’s disease and atypical parkinsonism. J Neurol Neurosurg Psychiatry 54: 898–904PubMedCrossRefGoogle Scholar
  52. Peppard RF, Martin WRW, Guttman M, McGeer PL, Walsh EM, Carr GD, Phillips AG, Grochowski E, Okada J, Tsui JKC, Mak E, Ruth T, Adam MJ, Calne DB (1988) The relationship of cerebral glucose metabolism to cognitive dificits in Parkinson’s disease. Neurology 38 [Suppl 1]: 364Google Scholar
  53. Perlmutter JS, Raichle ME (1985) Regional blood flow in hemiparkinsonism. Neurology 35: 1127–1134PubMedGoogle Scholar
  54. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RSJ, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a PET study. Ann Neurol 32: 151–161PubMedCrossRefGoogle Scholar
  55. Rascol O, Sabatini U, Chollet F, Celsis P, Montastruc J-L, Marc- Vergnes J-P, Rascol A (1992) Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 49: 144–148PubMedCrossRefGoogle Scholar
  56. Riley DE, Lang AE, Lewis A, Resch L, Ashby P, Hornykiewicz O, Black S (1990) Cortical-basal ganglionic degeneration. Neurology 40: 1203–1212PubMedGoogle Scholar
  57. Sage JI, Miller DC, Golbe LI, Walters A, Duvoisin RC (1990) Clinically atypical expression of pathologically typical Lewy-body parkinsonism. Clin Neuropharmacol 13: 36–47PubMedCrossRefGoogle Scholar
  58. Sawada H, Udaka F, Kameyama M, Seriu N, Nishinaka K, Shindou K, Kodama M, Nishitani N, Okumiya K (1992) SPECT findings in Parkinson’s disease associated with dementia. J Neurol Neurosurg Psychiatry 55: 960–963PubMedCrossRefGoogle Scholar
  59. Sawle GV, Brooks DJ, Marsden CD, Frackowiak RSJ (1991) Corticobasal degeneration: a unique pattern of regional cortical oxygen metabolism and striatal fluorodopa uptake demonstrated by positron emission tomography. Brain 114: 541–556PubMedCrossRefGoogle Scholar
  60. Schapiro MB, Grady C, Ball MJ, DeCarli C, Rapoport SI (1990) Reductions in parietal/ temporal cerebral glucose metabolism are not specific for Alzhemier’s disease. Neurology 40 [Suppl] 1: 152Google Scholar
  61. Spokes EGS, Bannister R, Oppenheimer DR (1979) Multiple system atrophy with autonomic failure. Clinical, histological, and neurochemical observations on four cases. J Neurol Sci 43: 59–62PubMedCrossRefGoogle Scholar
  62. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia, and cerebellum, with vertical gaze and pseudobulbar palsy. Arch Neurol 10: 333–359PubMedCrossRefGoogle Scholar
  63. Thaler DE, Passingham RE (1989) The supplementary motor cortex and internally directed movement. In: Crossman AR, Sambrook M (eds) Neural mechanisms in disorders of movement. Libby, London, pp 175–181Google Scholar
  64. Tyrrell PJ, Warrington EK, Frackowiak RSJ, Rossor MN (1990) Heterogeneity in progressive aphasia due to focal cortical atrophy; a clinical and PET scan study. Brain 113: 1321–1336PubMedCrossRefGoogle Scholar
  65. Weeks RA, Harding AE, Brooks DJ (1996) PET demonstrates a parallel loss of D1 and DZ dopamine receptors in asymptomatic mutation carriers of Huntington’s disease. Ann Neurol (in press)Google Scholar
  66. Wienhard K, Coenen HH, Pawlik G, Rudolf J, Laufer P, Jovkar S, Stocklin G, Heiss WD (1990) PET studies of dopamine receptor distribution using [18F]fluoroethylspiperone: findings in disorders related to the dopaminergic system. J Neural Transm 81: 195–213CrossRefGoogle Scholar
  67. Wolfson LI, Leenders KL, Brown LL, Jones T (1985) Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson’s disease. Neurology 35: 1399–1405PubMedGoogle Scholar
  68. Wong DF, Links JM, Wagner HNJr, Folstein SE, Suneja S, Dannals RF, Ravert HT, Wilson AA, Tune LE, Pearlson G, Folstein MF, Bice A, Kuhar NJ (1985) Dopamine and serotonin receptors measured in-vivo in Huntington’s disease with C-11 Nmethylspiperone PET imaging. J Nucl Med 26: P107Google Scholar
  69. Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20: 296–303PubMedCrossRefGoogle Scholar
  70. Young AB, Penney JB, Starosta-Rubinstein S, Markel D, Berent S, Rothley J, Betley A, Hichwa R (1987) Normal caudate glucose metabolism in persons at-risk for Huntington’s disease. Arch Neurol 44: 254–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • D. J. Brooks
    • 1
  1. 1.MRC Cyclotron UnitHammersmith HospitalLondonUK

Personalised recommendations