Skip to main content

„Nicht-Amyloid“-Hypothesen zur Ätiopathogenese der Demenz vom Alzheimer Typ (DAT)

  • Conference paper
  • 75 Accesses

Zusammenfassung

Demographische Betrachtungen. Der Altersaufbau der Bevölkerung Deutschlands hat sich im letzten Jahrhundert stark verändert. Nach koordinierten Vorausberechnungen hält dieser Trend an und es werden im Jahr 2030 die am stärksten besetzten Altersjahrgänge im siebten Lebensjahrzehnt zu finden sein (Bundesrat 1984, Sommer 1992). 1989 waren etwa drei Fünftel der Bevölkerung der Bundesrepublik Deutschland zwischen 20 und 60 Jahren alt. Der Anteil der Jüngeren und der Alteren betrug jeweils etwa ein Fünftel. Im Jahre 2030 soll ein Drittel der Bevölkerung 60 Jahre oder älter sein. Die Entwicklung der Altersstruktur zur immer älter werdenden Bevölkerung bedingt weitreichende Konsequenzen für viele Lebensbereiche. Mit Blick auf die Gesundheitsfürsorge ist zu beachten, daß alterskorrelierte chronische Erkrankungen überproportional zunehmen werden. Eine besondere Herausforderung stellen Hirnabbauerkrankungen im Alter dar, die besonders pflegeintensiv sind. Bisher stehen für die Therapie noch keine Strategien und Konzepte zur Verfügung, die als überzeugend gelten können, da ausreichende Erkenntnisse zu Ursachen, Entstehungsbedingungen und verlaufsbestimmenden Faktoren noch nicht vorhanden sind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abraham CR, Selkoe DJ, Potter H, Price DL, Cork LC (1989) α-antichymotrypsin is present together with the β-protein in monkey brain amyloid deposits. Neurosci 32: 715–720

    Article  CAS  Google Scholar 

  • Adelstein AM, Downham DY, Stein Z, Susser M (1968) The epidemiology of mental illness in an English city. Soc Psychiat 3: 47–59

    Article  Google Scholar 

  • Alzheimer A (1906) Über einen eigenartigen, schweren Erkrankungsprozess der Hirnrinde. Neurol Zentralbl 25: 1134

    Google Scholar 

  • Anwar N, Lovestone S, Cheetham ME, Levy R, Powell JF, Amouyel P, Brousseau T, Fruchart J, Dallongeville J, Lucotte G, David F, Visvikis S, Leininger-Müller B, Siest G, Babron MC, Couderc RC, Monning U, Tienari PJ, et al (1993) Apolipoprotein E-epsilon 4 allele and Alzheimer’s disease. Lancet 342: 1308–1310

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff s disease. Acta Neuropathol 61: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid β-protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Proc Natl Acad Sci USA 90: 567–571

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological stageing of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s diseases patients. Neurosci Lett 162: 179–182

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Uhl G, Mazurek MF, Kowall N, Martin GB (1986) Somatostatin: alterations in the central nervous system in neurological disorders. In: Martin GB, Barchas JD (eds) Neuropeptides in neurological and psychiatric disease. Raven Press, New York, pp 215–257

    Google Scholar 

  • Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Blass JP (1993) Pathophysiology of the Alzheimer’s syndrome. Neurology 43: 25–38

    Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection of the cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurology 32: 164–168

    PubMed  CAS  Google Scholar 

  • Bondareff W, Wischik CM, Novak M, Amos WB, Klug A, Roth M (1990) Molecular analysis of neurofibrillary degeneration in Alzheimer’s disease: an immunohistochemical study. Am J Pathol 37: 711–723

    Google Scholar 

  • Bondareff W, Harrington C, Wischik CM, Hauser DL, Roth M (1994) Immunohistochemical staging of neurofibrillary degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 53: 158–164

    Article  PubMed  CAS  Google Scholar 

  • Bundesrat (1984) Bericht über die Bevölkerungsentwicklung in der Bundesrepublik Deutschland. Unterrichtung durch die Bundesregierung. Drucksache 3

    Google Scholar 

  • Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, Martin S, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Sosna U (1983) Psychische Erkrankungen in der Altenbevölkerung. Eine epidemiologische Feldstudie in Mannheim. Nervenarzt 54: 239–249

    PubMed  CAS  Google Scholar 

  • Cowburn RF, O’Neill C, Ravid R, Alafuzoff I, Winlad B, Fowler CJ (1992 a) Adenylyl cyclase activity in postmortem human brain: evidence of altered G protein mediation in Alzheimer’s disease. J Neurochem 58: 1409–1419

    Article  PubMed  CAS  Google Scholar 

  • Cowburn RF, O’Neill C, Ravid R, Winblad B, Fowler CJ (1992b) Preservation of G(i)-protein inhibited adenylyl cyclase activity in the brains of patients with Alzheimer’s disease. Neurosci Lett 141: 16–20

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Johnson JA, Perry EK, Perry RH, Blessed G, Tomlinson B (1983) Monoamine metabolism in senile dementia of Alzheimer type. J Neurol Sci 60: 383–392

    Article  PubMed  CAS  Google Scholar 

  • Curzio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 48: 359–368

    Article  Google Scholar 

  • Czech C, Förstl H, Hentschel F, Monning U, Besthorn C, Geiger-Kabisch C, Sattel H, Masters C, Beyreuther K (1994) Apolipoprotein E-4 gene dosage in clinically diagnosed Alzheimer’s disease: prevalence, plasma cholesterol levels and cerebrovascular change. Eur Arch Psychiat Clin Neurosci 243: 291–292

    Article  CAS  Google Scholar 

  • Davies P, Terry RD (1981) Cortical somatostatin-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type. Neurobiol Aging 2: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8: 1–21

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Wilczak N, Goossens A (1994) Insulin-like growth factor-I receptor densities in human frontal cortex and white matter during aging, in Alzheimer’s disease, and in Huntington’s disease. Neurosci Lett 172: 93–96

    Article  PubMed  Google Scholar 

  • Delamarche C (1989) A homologous domain between the amyloid protein of Alzheimer’s disease and the neurofilament subunits. Biochimie 71: 853–856

    Article  PubMed  CAS  Google Scholar 

  • Ebrahim S, Schupf S, Silverman W, Zigman WB, Moretz RC, Wisniewski HM, Taylor E, Devakumar M, Lindegard B, Lindesay J, Grant DJ, McMurdo MET, Corrigan FM, Reynolds GP, Ward NI, Farrar G, Blair JA, Curran S, Hindmarch I, Steer C (1989) Aluminium and Alzheimer’s disease. Lancet ii: 267–269

    Article  Google Scholar 

  • Ellison DW, Beal MF, Mazurek MF, Bird ED, Martin BJ (1986) A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann Neurol 20: 616–621

    Article  PubMed  CAS  Google Scholar 

  • Frölich L, Strauss M, Kornhuber J, Hoyer S, Sorbi S, Riederer P, Amaducci L (1990) Changes in pyruvate dehydrogenase complex (PDHc) activity and [3H]-QNB binding in rat brain subsequent to intracerebroventricular injection of bromopyruvate. J Neural Transm [P-D Sect] 2: 169–178

    Article  Google Scholar 

  • Fukuyama H, Ogawa M, Yamaguchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35: 1–6

    PubMed  CAS  Google Scholar 

  • Gabuzda D, Busciglio J, Bo Chen L, Matsudaira P, Yanker BA (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 269: 13623–13628

    PubMed  CAS  Google Scholar 

  • Gautrin D, Gauthier S (1989) Alzheimer’s disease: environmental factors and etiologic hypothesis. Can J Neurol Sci 16: 375–387

    PubMed  CAS  Google Scholar 

  • Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease. Brain Res 387: 85–92

    PubMed  CAS  Google Scholar 

  • Goedert M, Fine A, Dawbarn D, Wilcock GK, Chao MV (1989) Nerve growth factor receptor mRNA in human brain: normal levels in basal forebrain in Alzheimer’s disease. Mol Brain Res 5: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Götz M, Freyberger A, Hauer E, Burger R, Sofic E, Gsell W, Heckers S, Jellinger K, Hebenstreit G, Frölich L, Beckmann H, Riederer P (1992) Susceptibility of brains from patients with Alzheimer’s disease to oxygen-stimulated lipid peroxidation and different scanning calorimetry. Dementia 3: 213–222

    Google Scholar 

  • Gsell W, Moll G, Sofic E, Riederer P (1993) Cholinergic and monoaminergic neurotransmitter systems in patients with Alzheimer’s disease and senile dementia of Alzheimer type: a critical evaluation. In: Maurer K (ed) Dementias: neurochemistry, neuropathology, neuroimaging, neuropsychology and genetics. Vieweg, Braunschweig, pp 25–51

    Google Scholar 

  • Gsell W, Conrad R, Hickethier M, Sofie E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H, Riederer P (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem 64: 1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM, Quinlan GJ, Clark I, Halliwell B (1985) Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447

    PubMed  CAS  Google Scholar 

  • Hafner H, Weyerer S (1986) Psychische Gesundheit im Alter. Wien Klin Wochenschr 98: 635–642

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. TINS 1/85: 22–26

    Google Scholar 

  • Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, O’Carroll A-M, Wester P, Winblad B (1987) Region-specific loss of glutamate innervation in Alzheimer’s disease. Neurosci Lett 73: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Barton AJL, McDonald B, Pearson RCA (1991) Alzheimer’s disease: specific increases in a G protein subunit (G5α) mRNA in hippocampal and cortical neurons. Mol Brain Res 10: 71–81

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 20: 275–281

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Schneider LS (1991) Rationale for the planned clinical trials with nerve growth factor in Alzheimer’s disease. Psychiat Dev 7: 297–315

    Google Scholar 

  • Helgason L (1977) Psychiatric services and mental illness in Iceland. Acta Psychiatr Scand [Suppl 268]

    Google Scholar 

  • Hellweg R (1992) „Nerve growth factor“ (NGF): pathophysiologische Bedeutung und mögliche therapeutische Konsequenzen. Nervenarzt 63: 52–56

    PubMed  CAS  Google Scholar 

  • Henderson AS, Henderson JH (1988) Etiology of dementia of Alzheimer’s type. Dahlem Konferenzen. Wiley, Chichester

    Google Scholar 

  • Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 106: 222–236

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Österreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer’s type. J Neurol 235: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Nitsch R, Österreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm [P-D Sect] 3: 1–14

    Article  CAS  Google Scholar 

  • Huang H, Gibson GE (1993) Altered beta-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors. J Biol Chem 268: 14616–14621

    PubMed  CAS  Google Scholar 

  • Jorm AF, Korten AE, Henderson AS (1987) The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 76: 465–479

    Article  PubMed  CAS  Google Scholar 

  • Katzman R (1976) The prevalence and malignancy of Alzheimer’s disease. Arch Neurol 33: 217–218

    Article  PubMed  CAS  Google Scholar 

  • Kay DWK, Bergmann K, Foster EM, McKenchie AG, Roth M (1970) Mental illness and hospital usage in the elderly: a random sample follow-up. Compr Psychiat 2: 26–35

    Article  Google Scholar 

  • Koliatsos VE, Clatterbuck RE, Nauta HJW, Knüsel B, Burton LE, Hefti F, Mobley WC, Price DL (1991) Human nerve growth factor prevents degeneration of basal fore-brain cholinergic neurons in primates. Ann Neurol 30: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Sisodia SS, Cork LC, Unterbeck A, Bayney RM, Price DL (1990) Differential expression of amyloid precursor protein mRNAs in cases of Alzheimer’s disease and in aged nonhuman primates. Neuron 2: 97–104

    Article  Google Scholar 

  • Kosik KS, Orecchio LD, Binder L, Trojanowski JQ, Lee VM-Y, Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Fischer P, Jellinger K (1993) Synaptic pathology of Alzheimer’s disease. Ann NY Acad Sci 695: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Lee VM-Y, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A 68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237: 1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA (1983) The locus coeruleus and its possible role in aging and degenerative disease of the human central nervous system. Mech Ageing Dev 23: 73–94

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Esiri MM (1989) The pattern of aquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J Neurol Sci 89: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer’s type and Down’s syndrome in middle age form an age related continuum of age related changes. Neuropathol Appl Neurobiol 10: 185–207

    Article  PubMed  CAS  Google Scholar 

  • Marklund SL, Adolfsson R, Gottfries CG, Winblad B (1985) Superoxide isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Sisodia SS, Koo EH, Cork LC, Dellovade TL, Weidemann A, Beyreuther K, Masters CL, Price DL (1991) Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci USA 88: 1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Multhaup G, Simms G, Pottgieser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4: 2757–2763

    PubMed  CAS  Google Scholar 

  • McLaughlin M, Ross BM, Milligan G, McCulloch J, Knowler JT (1991) Robustness of G proteins in Alzheimer’s disease: an immunoblot study. J Neurochem 57: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Münch G, Taneli Y, Schraven E, Schindler U, Schinzel R, Palm D, Riederer P (1995) The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J Neural Transm [P-D Sect] 8: 193–208

    Article  Google Scholar 

  • Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase is reduced in Alzheimer’s disease. J Neurochem 63: 2179–2184

    Article  PubMed  CAS  Google Scholar 

  • New York State Department of Mental Hygiene (1961) A mental health survey of older people. State Hospital Press, Utica, New York

    Google Scholar 

  • Nielsen JA (1962) Gerontopsychiatric period-prevalence investigation in a geographically delimited population. Acta Psychiatr Scand 38: 307–330

    Article  Google Scholar 

  • Noguchi S, Murakami K, Yamada N, Payami H, Kaye J, Heston LL, Bird TD, Schellenberg GD (1993) Apolipoprotein E genotype and Alzheimer’s disease. Lancet 342: 737–738

    Article  PubMed  CAS  Google Scholar 

  • Ohm TG, Bohl J, Lemmer B (1991) Reduced basal and stimulated (isoprenaline, Gpp(NH)p, forskolin) adenylate cyclase activity in Alzheimer’s disease correlated with histopathological changes. Brain Res 540: 229–236

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C, Wiehager B, Fowler CJ, Ravid R, Winblad B, Cowburn RF (1994) Regionally selective alterations in G protein subunit levels in the Alzheimer’s disease brain. Brain Res 636: 193–201

    Article  PubMed  Google Scholar 

  • Ozawa H, Saito T, Frölich L, Hashimoto E, Hatta S, Ohshika H, Rasenick MM, Takahata N, Riederer P (1995) Quantity and quality changes of G proteins in dementia of Alzheimer type. In: Hanin I, Yoshida M, Fisher A (eds) Alzheimer’s and Parkinson’s disease. Recent developments. Raven Press, New York (in press)

    Google Scholar 

  • Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein polymorphism and Alzheimer’s disease. Lancet 342: 697–699

    Article  PubMed  CAS  Google Scholar 

  • Regeur L, Badsberg Jensen G, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 15: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson’s disease and the electron transport chain in postmortem brain. Adv Neurol 60: 297–299

    PubMed  CAS  Google Scholar 

  • Reischies FM, Gessner R, Kage A (1994) Apolipoprotein E-Typologie und Demenz. Nervenarzt 65: 492–495

    PubMed  CAS  Google Scholar 

  • Saunders AM, Schmader K, Breitner JCS, Benson MD, Brown WT, Goldfarb L, Goldgaber D, Manwaring MG, Szymanski MH, McCown N, Dole KC, Schmechel DE, Strittmatter WJ, Pericak-Vance MA, Roses AD (1993a) Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 342:710–711

    Article  PubMed  CAS  Google Scholar 

  • Saunders AM, Strittmatter WJ, Schmechel D, St George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper MacLachlan DR, Alberts MJ, Hulette C, Crain B, Goldgaber D, Roses AD (1993b) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472

    PubMed  CAS  Google Scholar 

  • Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258: 668–671

    Article  PubMed  CAS  Google Scholar 

  • Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 9649–9653

    Article  PubMed  CAS  Google Scholar 

  • Shapiro IP, Masliah E, Saitoh T (1991) Altered protein tyrosine phosphorylation in Alzheimer’s disease. J Neurochem 56: 1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Simonian NA, Hyman BT (1994) Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J Neuropathol Exp Neurol 53: 508–512

    Article  PubMed  CAS  Google Scholar 

  • Sommer B (1992) Entwicklung der Bevölkerung bis 2030. Ergebnisse der siebten koordinierten Bevölkerungsvorausberechnung. Wirtschaft und Statistik 4: 217–222

    PubMed  Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13: 72–78

    Article  PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins, PC, Myers RH, et al (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235: 885–890

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance MA, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90: 1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Goedert M, Saunders AM, Huang D, Corder EH, Dong L, Jakes R, Alberts MJ, Gilbert JR, Han S, Hulette C, Einstein G, Schmechel DE, Pericak-Vance MA, Roses AD (1994) Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol 125: 163–171

    Article  PubMed  CAS  Google Scholar 

  • Subbarao KV, Richardson JS, Ang LC (1990) Autopsy samples of Alzheimer’s cortex shows increased lipid peroxidation in vitro. J Neurochem 55: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, De Teresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Katzman R, Bick KL (1994) Alzheimer’s disease. Raven Press, New York

    Google Scholar 

  • Ueki A, Kawano M, Namba Y, Kawa Kami M, Ikeda K (1993) A high frequency of apolipoprotein E4 isoprotein in Japanese patients with late-onset nonfamilial Alzheimer’s disease. Neurosci Lett 163: 166–168

    Article  PubMed  CAS  Google Scholar 

  • Van Broeckhoven C, Haan J, Bakker E, Hardy JA, Van Hul W, Wehnert A, Vegter-Van der Vlis M, Roos RAC (1990) Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248: 1120–1126

    Article  PubMed  Google Scholar 

  • van Rensburg SJ, Daniels WMU, van Zyl J, Potocnik FCV, van der Walt BJ, Taljaard JJF (1994) Lipid peroxidation and platelet membrane fluidity — implications for Alzheimer’s disease? NeuroReport 5: 2221–2224

    Article  PubMed  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91: 4766–4770

    Article  PubMed  CAS  Google Scholar 

  • Volicer L, Chen JC, Crino PB, Vogt BA, Fishman J, Rubins J, Schenepper PW, Wolfe N (1989) Neurotoxic properties of a serotonin oxidation product: possible role in Alzheimer’s disease. Prog Clin Biol Res 317: 453–465

    PubMed  CAS  Google Scholar 

  • Wurtman RJ (1992) Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. TINS 15: 117–122

    PubMed  CAS  Google Scholar 

  • Zemlan FP, Thienhaus OJ, Bosmann HB (1989) Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res 476: 160–162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

Gsell, W. et al. (1996). „Nicht-Amyloid“-Hypothesen zur Ätiopathogenese der Demenz vom Alzheimer Typ (DAT). In: Möller, HJ., Müller-Spahn, F., Kurtz, G. (eds) Aktuelle Perspektiven der Biologischen Psychiatrie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6889-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6889-9_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7425-8

  • Online ISBN: 978-3-7091-6889-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics