Skip to main content

Zusammenfassung

Short-term memory — where do we stand? überschrieb der bekannte Gedächtnisforscher Robert Crowder (1993) seinen Beitrag in der Zeitschrift „Memory and Cognition“ und zog das eher ernüchternde Fazit, daß man trotz einiger Fortschritte in den letzten drei Dekaden eigentlich noch immer nach einem Weg suche, das Konzept Kurzzeitgedächtnis zu verstehen. Kurzzeitgedächtnis, der Mittler zwischen dem, was wir wissen und dem, was wir wahrnehmen oder tun (Cowan 1993), wird vielfach durch drei, weder orthogonale noch synonyme Aspekte charakterisiert: (1) die temporäre Aktivierung neuronaler (und gliöser?) Strukturen, (2) bestimmte Kontrollprozesse und (3) eine begrenzte Kapazität. Einigkeit besteht immerhin darüber, daß unser Gehirn die Fähigkeit besitzt, Informationen über kurze Zeitintervalle hinweg „in aktivierter Form“ zu halten; womit nicht gesagt ist, ob es für diese temporäre interne Repräsentation von Informationen eines eigenständigen kognitiven Subystems bedarf. Crowder (1993) hat dieses Problem mit der Formulierung auf den Punkt gebracht „we should be vigilant in distinguishing between (1) cases requiring memory over short intervals of time and (2) cases requiring a dedicated subsystem of short-term storage“. Mit anderen Worten, Kurzzeitgedächtnis könnte eine den verschiedenen zerebralen Verarbeitungsprozessen immanente Eigenschaft sein oder eben ein von diesen Prozessen losgelöstes, anatomisch abgrenzbares kognitives Subsystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Acquas E, Day JC, Fibiger HC (1994) The potent and selective dopamine D-1 receptor agonist A-77636 increases cortical and hippocampal acetylcholine release in the rat. Eur J Pharmacol 260: 85–87

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RC, Shiffrin RM (1968) Human memory: a proposed system and its control processes. In: Spence KW (ed) The psychology of learning and motivation: advances in research and theory, vol 2. Academic Press, New York, pp 89–195

    Google Scholar 

  • Backer Cave C, Squire LR (1992) Intact verbal and nonverbarshort-term memory following damage to the human hippocampus. Hippocampus 2: 151–164

    Article  Google Scholar 

  • Baddeley A (1992) Is working memory working? The fifteenth Bartlett lecture. Quart J Exp Psychol 44: 1–31

    Article  Google Scholar 

  • Baddeley A (1992b) Working memory: the interface between memory and cognition. J Cogn Neurosci 4: 281–288

    Article  Google Scholar 

  • Baddeley AD, Hitch G (1974) Working memory. In: Bower GA (ed) Recent advances in learning and motivation, vol 8. Academic Press, New York, pp 47–89

    Google Scholar 

  • Berger B, Trotter A, Verney C, Gasper P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a autoradiographic study. J Comp Neurol 273: 99–119

    Article  PubMed  CAS  Google Scholar 

  • Blum RA (1952) Effects of subtotal lesions of frontal granular cortex on delayed reaction in monkeys. AMA Arch Neurol Psychiatr 67: 375–386

    CAS  Google Scholar 

  • Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of rhesus monkey: concentrations and in vivo synthesis. Brain Res 168: 133–150

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Cortés R, Gueye B, Probs A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience 28: 275–290

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Sagar HJ, Harvey NS, Jordan N, Sullivan EV (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114: 2095–2122

    Article  PubMed  Google Scholar 

  • Cooper JA, Sagar HJ, Doherty M, Jordan N, Tidswell P, Sullivan EV (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. Brain 15: 1701–1725

    Article  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discrimination of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11: 2383–2402

    PubMed  CAS  Google Scholar 

  • Cortés R, Gueye B, Pazos A, Probs A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28: 263–273

    Article  PubMed  Google Scholar 

  • Cowan N (1993) Activation, attention, and short-term memory. Memory Cogn 21: 162–167

    Article  CAS  Google Scholar 

  • Crowder RG (1993) Short-term memory: where do we stand? Memory Cogn 21: 142–145

    Article  CAS  Google Scholar 

  • Dalrymple-Alford JC, Kalders AS, Jones RD, Watson RW (1994) A central executive deficit in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 57: 360–367

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Hitchcock JM, Bowers MB, Berridge CW, Melia KR, Roth RH (1994) Stressinduced activation of prefrontal cortex dopamine turnover: blockade by lesions of amygdala. Brain Res 664: 207–210

    Article  PubMed  CAS  Google Scholar 

  • Diamond A, Goldman-Rakic PS (1989) Comparison of human infants and rhesus monkeys on Piaget’s AB task: evidence for dependence on dorsolateral prefrontal cortex. Exp Brain Res 74: 24–40

    Article  PubMed  CAS  Google Scholar 

  • Elrod K, Buccafusco JJ, Jackson WJ (1988) Nicotine enhances delayed matching-to-sample performance by primates. Life Sci 43: 277–287

    Article  PubMed  CAS  Google Scholar 

  • Freedman M, Oscar-Berman M (1986) Bilateral frontal lobe disease and selective deleaved response deficits in humans. Behav Neurosci 100: 337–342

    Article  PubMed  CAS  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1994) Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Neurosci 14: 2775–2788

    CAS  Google Scholar 

  • Frith CD, Friston KJ, Liddle PF, Frackowiak RSJ (1991) Willed action and the prefrontal cortex in man: a study with PET. Proc Roy Soc Lond (B9) 244: 241–246

    Article  CAS  Google Scholar 

  • Funahashi S, Goldman-Rakic PS (1990) Delay-period activity of prefrontal neurons in delayed saccade and antisaccade tasks. Soc Neurosci Abstr 16: 1223

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61: 331–349

    PubMed  CAS  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex, 2nd ed. Raven Press, New York

    Google Scholar 

  • Fuster JM (1990) Behavioral electrophysiology of the prefrontal cortex of the primate. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) Progress in brain research, vol 85. Elsevier Science Publishers BV, North Holland, pp 313–323

    Google Scholar 

  • Goldman-Rakic PS (1991) Prefrontal cortical dysfunction in schizophrenia: the relevance of working memory. In: Carroll BJ, Barrett JE (eds) Psychopathology and the brain, vol 1. Raven Press, New York, pp 1–23

    Google Scholar 

  • Goldman-Rakic PS (1992) Dopamine-mediated mechanisms of the prefrontal cortex. Semin Neurosci 4: 149–159

    Article  Google Scholar 

  • Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits, vol LV. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1025–1038

    Google Scholar 

  • Goto T, Kuzuya F, Endo H, Tajima T, Ikari H (1990) Some effects of CNS cholinergic neurons on memory. J Neural Transm [Suppl 30]: 1–11

    Google Scholar 

  • Gross CG, Weiskrantz L (1964) Some changes in behavior produced by lateral frontal lesions in the macaque. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw Hill, New York, pp 74–101

    Google Scholar 

  • Levin ED, Eisner B (1994) Nicotine interactions with dopamine agonist: effects on working memory function. Drug Dev Res 31: 32–37

    Article  CAS  Google Scholar 

  • Lewis DA (1992) The catecholaminergic innervation of primate prefrontal cortex. J Neural Transm [Suppl] 36: 179–200

    CAS  Google Scholar 

  • Li BM, Mei ZT (1994) Delayed-response defcit induced by local injection of the alpha(2)-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol 62: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Litman RE, Hommer DW, Clem T, Ornsteen ML, Ollo C, Pickar D (1991) Correlation of Wisconsin card sorting test performance with eye tracking in schizophrenia. Am J Psychiatry 148: 1580–1582

    PubMed  CAS  Google Scholar 

  • Luciana M, Depue RA, Arbisi P, Leon A (1992) Facilitation of working memory in humans by a D2 dopamine receptor agonist. J Cogn Neurosci 4: 257–267

    Article  Google Scholar 

  • Martin RC (1993) Short-term memory and sentence processing: evidence from neuropsychology. Memory Cogn 21: 176–183

    Article  CAS  Google Scholar 

  • Mishkin M, Manning FJ (1978) Nonspatial memory after selective prefrontal lesions in monkey. Brain Res 143: 313–323

    Article  PubMed  CAS  Google Scholar 

  • Moscovitch M (1992) Memory and working-with-memory: a component process model based on modules and central systems. J Cogn Neurosci 4: 257–267

    Article  Google Scholar 

  • Newhouse PA, Potter A, Corwin J, Lenox R (1992) Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology 108: 480–484

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstr MPG (eds) Progress in brain research, vol 85, ch 4. Elsevier Science Publishers BV, North Holland, pp 63–94

    Google Scholar 

  • Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selction in the Stroop attentional conflict pardigm. Neurobiology 87: 256–259

    CAS  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975–982

    Article  PubMed  CAS  Google Scholar 

  • Penit-Soria J, Audinat E, Crepel F (1987) Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res 425: 263–274

    Article  PubMed  CAS  Google Scholar 

  • Petrides M (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90: 878–882

    Article  PubMed  CAS  Google Scholar 

  • Potter MC (1993) Very short-term conceptual memory. Memory Cogn 21: 156–161

    Article  CAS  Google Scholar 

  • Rusted JM (1988) Dissociative effects of scopolamine on working memory in healthy volunteers. Psychopharmacology 96: 487–492

    Article  PubMed  CAS  Google Scholar 

  • Rusted JM, Warburton DM (1988) Effects of scopolamine on working memory in healthy volunteers. Psychopharmacology 96: 145–152.

    PubMed  CAS  Google Scholar 

  • Rusted JM, Eaton-Williams P, Warburton DM (1991) A comparison of the effects of scopolamine and diazepam on working memory. Psychopharmacology 105: 442–445

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71: 515–528

    PubMed  CAS  Google Scholar 

  • Spitzer M (1993) The psychopathology, neuropsychology, and neurobiology of associative and working memory in schizophrenia. Eur Arch Psychiatry Clin Neurosci 243: 57–70

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ, Visser SL, Op de Coul AAW, De Sonneville LMJ, Schellens RLLA, Brunia CHM, de Smet JS, Gielen G (1993) Disturbed frontal regulation of attention in Parkinson’s disease. Brain 116: 1139–1158

    Article  PubMed  Google Scholar 

  • Verin M, Partiot A, Pillon B, Malapani C, Agid Y, Dubois B (1994) Delayed response tasks and prefrontal lesions in man — evidence for self generated patterns of behaviour with poor environmental modulation. Neuropsychologia 31: 1379–1396

    Article  Google Scholar 

  • Watanabe T, Niki H (1985) Hipocampal unit activity and delayed response in the monkey. Brain Res 325: 241

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. 1. Regional cerebral blood flow (rCBF) evidence. Arch Gen Psychiatry 43: 114–125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

von Cramon, D.Y. (1996). Neurobiologie des Arbeitsgedächtnisses. In: Möller, HJ., Müller-Spahn, F., Kurtz, G. (eds) Aktuelle Perspektiven der Biologischen Psychiatrie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6889-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6889-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7425-8

  • Online ISBN: 978-3-7091-6889-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics