Skip to main content

Bone Replacement Studies Using Titanium Chamber Models in Small Animals

  • Chapter

Summary

When Kiel bone was introduced clinically, animal experiments seemed to demonstrate its efficiency. It later became obvious that the utilized experimental models were insufficiently sensitive. This presentation discusses the demands on a model for evaluating materials with claimed “osteoinductive” properties, and describes some attempts to meet these demands by using titanium bone chamber techniques. A new type of chamber allows studies of the osteoconductive performance of cancellous bone grafts in rats. This model makes it possible to carry out large series of experiments. It was shown that defatting increased bone graft incorporation, and that defatted bone grafts performed even better if they were pretreated with basic Fibroblast Growth Factor (bFGF). Ethylene oxide sterilization had a dramatic negative effect even though residuals were below levels recommended by the FDA. Radiation had no effect. As fibrous tissue ingrowth into porous materials was usually affected in the same way as bone ingrowth, it appears that the term “osteoconduction” has to be further defined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspenberg P, Albrektsson T, Lohmander LS, Thorngren K-G (1988) Drug test chamber: a titanuim implant for adminstration of biochemical agents to a standardized bone callus in situ. J Biomed Eng 10: 70 – 73

    Article  PubMed  CAS  Google Scholar 

  2. Aspenberg P, Kalebo P, Albrektsson T (1988) Rapid bone healing delayed by bone matrix implantation. Int J Oral Maxillofac Implants 3: 123 – 127

    PubMed  CAS  Google Scholar 

  3. Aspenberg P, Albrektsson T, Thorngren K-G (1989) Local application of growth-factor IGF-1 to healing bone. Experiments with a titanium chamber in rabbits. Acta Orthop Scand 60: 607– 610

    Article  PubMed  CAS  Google Scholar 

  4. Aspenberg P, Thoren K (1990) Lipid extraction enhances bank bone incorporation. An experiment in rabbits. Acta Orthop Scand 61: 546 – 548

    Article  PubMed  CAS  Google Scholar 

  5. Aspenberg P, Goodman S, Toksvig-Larsen S, Ryd L, Albrektsson T (1992) Intermitent micromo¬tion inhibits bone ingrowth. Experiment using titanium implants in rabbits. Acta Orthop Scand 63: 141 – 145

    Article  PubMed  CAS  Google Scholar 

  6. Aspenberg P, Wang JS (1993) A new bone chamber used for measuring osteoconduction in rats. Eur J Exp Musculoskel Res 2: 69 – 74

    Google Scholar 

  7. Aspenberg P, Choon P, Wang JS, Thorngren K-G (1994) No effect of growth hormone on bone graft incorporation in the normal rat. Acta Orthop Scand 65 (4): 456 – 461

    Article  PubMed  CAS  Google Scholar 

  8. Aspenberg P, Wang J-S (1996) Porous hydroxyapatite loaded with bFGF. Titanium chamber study in rats. In: Buchhorn W HG (ed) Ceramic implant materials in orthopedic surgery. Accepted for publication

    Google Scholar 

  9. Aspenberg P, Wang JS (1994) Basic fibroblast growth factor. Dose and time-dependence in rats. Trans Orthop Res Soc 19: 181

    Google Scholar 

  10. Bonewald LF, Mundy GR (1990) Role of transforming growth factor beta in bone remodelling. Clin Orthop 250: 261 – 276

    PubMed  Google Scholar 

  11. Constantz BR, Young SW, Kienapfel H, Dahlen BL, Summer DR, Turner TM, Urban RM, Galante JO, Goodman SB, Gunasekaran S (1994) Calcium phosphate cement in a rabbit femoral canal and a canine humeral plug model: A pilot investigation. Materials Research Society symposium proceedings, Vol 252. Tissue-inducing biomaterials (ed: Cima LG, Ron ES )

    Google Scholar 

  12. Gardeniers JWM (1988) Behaviour of normal, avascular and revascularizing cancellous bone in the femoral head of an African pygmy goat. ISBN 90-9002151-5 Thesis, Nijmegen

    Google Scholar 

  13. Glimcher MJ, Kenzora JE (1979a) The biology of osteonecrosis of the human femoral head and its clinical implications: I Tissue biology. Clin Orthop 38: 284 – 309

    Google Scholar 

  14. Glimcher MJ, Kenzora JE (1979b) The biology of osteonecrosis of the human femoral head and its clinical implications: II. The pathological changes in the femoral head as an organ in the hip joint. Clin Orthop 139: 283 – 312

    Google Scholar 

  15. Glimcher MJ, Kenzora JE (1979c) The biology of osteonecrosis of the human femoral head and its clinical implications: III. Discussion of the etiology and genesis of the pathological sequelae; comments on treatment. Clin Orthop 140: 273 – 312

    Google Scholar 

  16. Goodman SB (1994) The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits: Thesis Acta Orthop Scand [Suppl 258] 65: 1 – 43

    Google Scholar 

  17. Goodman S, Aspenberg P (1993) Mechanical stimulation and the differentiation of hard tissues. Biomaterials 14: 563 – 569

    Article  PubMed  CAS  Google Scholar 

  18. Goodman SB, Aspenberg P, Wang JS, Doshi A, Regula D, Emmanual J, Lidgren L (1993) Cement particles inhibit bone ingrowth into titanuim chambers implanted in the rabbit. Acta Orthop Scand 64: 627 – 633

    Article  PubMed  CAS  Google Scholar 

  19. Hallen LG (1996) Heterologous transplantation of Kiel bone. An experimental and clinical study. Acta Orthop Scand 37: 1 – 19

    Google Scholar 

  20. Hooten Jr JP, Engh Jr CA, Engh CA (1994) Failure of structural acetabular allograft in cementless revision hip arthroplasty. J Bone Joint Surg (Br) 76: 419 – 422

    Google Scholar 

  21. Hopf A (1963) Citation from Haasch K. Klinische Erfahrungen mit dem Kieler Span. Der Chirurg 34: 21

    Google Scholar 

  22. Katthagen B-D (1986) Knochenregeneration mit Knochenersatzmaterialien. Eine tierexperi- mentelle Studie In: Hefte zur Unfallheilkunde. Berlin: Springer

    Google Scholar 

  23. Kalebo P, Jacobsson M (1988) Recurrent bone generation in titanium implants. Biomaterials 9: 295 – 301

    Article  PubMed  CAS  Google Scholar 

  24. Maatz R, Bauermeister AB (1961) Klinische Erfahrungen mit dem Kieler Span. Langenbeck Arch Chir 208: 239

    Article  Google Scholar 

  25. Maatz R, Lent W, Graff R (1954) Spongiosa test on bone graft. J Bone Joint Surg (Am) 36: 721

    Google Scholar 

  26. Mulroy RD, Harris WH (1990) Failure of acebular autogenous grafts in total hip arthroplasty. Increasing incidence: a follow-up note. J Bone Joint Surg Am 72: 1536 – 1540

    PubMed  Google Scholar 

  27. Oursler MJ (1992) Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Mineral Res 9: 443

    Article  Google Scholar 

  28. Ramani PS, Kalbag RM, Sengupta RP (1975) Cervical spinal interbody fusion with Kiel bone. Br J Surg 62: 147 – 150

    Article  PubMed  CAS  Google Scholar 

  29. Schnettler R, Dingeldein E, Wahlig H, Tausch W (1992) Potential of porous HA and bFGF loaded porous HA on bone repair in cancellous bone in mini pigs. Trans World Biomat Congr 4: 260

    Google Scholar 

  30. Schweiberer L (1970) Experimentelle Untersuchungen von Knochentransplantaten mit Unveran- derter und mit Denaturierter Knochengrundsubstanz. Ein Beitrag zur kausalen Osteogenese. In: Hefte zur Unfallheilkunde. Berlin: Springer

    Google Scholar 

  31. Sweet DE, Madewell DJE (1988) Pathogenesis of osteonecrosis. In: Resnick D, Niwayama G (eds) Diagnosis of bone an joint disorders. London: Saunders WB

    Google Scholar 

  32. Thoren K, Aspenberg P, Thorngren K-G (1993) Lipid extraction decreases the specific immun¬ologic response to bone allograft in rabbits. Acta Orthop Scand 64: 44 – 46

    Article  PubMed  CAS  Google Scholar 

  33. Thoren K, Aspenberg P (1993) Effects of basic fibroblast growth factor on bone allografts. A study using bone harvest chambers in rabbits. Ann Surg Gyn 82: 129 – 135

    Google Scholar 

  34. Thoren K, Aspenberg P, Thorngren K-G (1995) Lipid-extracted bank bone. Bone conductive and mechanical properties. Clin Orthop 311: 232 – 246

    PubMed  Google Scholar 

  35. Thoren K, Aspenberg P (1995) Increased bone ingrowth distance into lipid extracted bank bone at 6 weeks. A titanuim chamber study in allogenic and syngenic rats. Arch Orthop Trauma Surg 114: 167 – 171

    Article  PubMed  CAS  Google Scholar 

  36. Wang JS, Aspenberg P (1994) Basic fibroblast growth factor increases allograft incorporation. Bone chamber study in rats. Acta Orthop Scand 65: 27 – 31

    PubMed  CAS  Google Scholar 

  37. Wipperman BW, Zwipp H, Junge P, Saeman T, Tischerne H (1994) Healing of a segmental defect in the sheep tibia filled with a hydroxyapatite ceramic augmented by basic fibroblast growth factor and autologous bone marrow. Trans Orthop Res Soc 19: 545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this chapter

Cite this chapter

Aspenberg, P. (1996). Bone Replacement Studies Using Titanium Chamber Models in Small Animals. In: Czitrom, A.A., Winkler, H. (eds) Orthopaedic Allograft Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6885-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6885-1_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7423-4

  • Online ISBN: 978-3-7091-6885-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics