Advertisement

Bone Replacement Studies Using Titanium Chamber Models in Small Animals

  • Per Aspenberg

Summary

When Kiel bone was introduced clinically, animal experiments seemed to demonstrate its efficiency. It later became obvious that the utilized experimental models were insufficiently sensitive. This presentation discusses the demands on a model for evaluating materials with claimed “osteoinductive” properties, and describes some attempts to meet these demands by using titanium bone chamber techniques. A new type of chamber allows studies of the osteoconductive performance of cancellous bone grafts in rats. This model makes it possible to carry out large series of experiments. It was shown that defatting increased bone graft incorporation, and that defatted bone grafts performed even better if they were pretreated with basic Fibroblast Growth Factor (bFGF). Ethylene oxide sterilization had a dramatic negative effect even though residuals were below levels recommended by the FDA. Radiation had no effect. As fibrous tissue ingrowth into porous materials was usually affected in the same way as bone ingrowth, it appears that the term “osteoconduction” has to be further defined.

Keywords

Bone Graft Bone Allograft Bone Ingrowth Demineralized Bone Matrix Bank Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspenberg P, Albrektsson T, Lohmander LS, Thorngren K-G (1988) Drug test chamber: a titanuim implant for adminstration of biochemical agents to a standardized bone callus in situ. J Biomed Eng 10: 70 – 73PubMedCrossRefGoogle Scholar
  2. 2.
    Aspenberg P, Kalebo P, Albrektsson T (1988) Rapid bone healing delayed by bone matrix implantation. Int J Oral Maxillofac Implants 3: 123 – 127PubMedGoogle Scholar
  3. 3.
    Aspenberg P, Albrektsson T, Thorngren K-G (1989) Local application of growth-factor IGF-1 to healing bone. Experiments with a titanium chamber in rabbits. Acta Orthop Scand 60: 607– 610PubMedCrossRefGoogle Scholar
  4. 4.
    Aspenberg P, Thoren K (1990) Lipid extraction enhances bank bone incorporation. An experiment in rabbits. Acta Orthop Scand 61: 546 – 548PubMedCrossRefGoogle Scholar
  5. 5.
    Aspenberg P, Goodman S, Toksvig-Larsen S, Ryd L, Albrektsson T (1992) Intermitent micromo¬tion inhibits bone ingrowth. Experiment using titanium implants in rabbits. Acta Orthop Scand 63: 141 – 145PubMedCrossRefGoogle Scholar
  6. 6.
    Aspenberg P, Wang JS (1993) A new bone chamber used for measuring osteoconduction in rats. Eur J Exp Musculoskel Res 2: 69 – 74Google Scholar
  7. 7.
    Aspenberg P, Choon P, Wang JS, Thorngren K-G (1994) No effect of growth hormone on bone graft incorporation in the normal rat. Acta Orthop Scand 65 (4): 456 – 461PubMedCrossRefGoogle Scholar
  8. 8.
    Aspenberg P, Wang J-S (1996) Porous hydroxyapatite loaded with bFGF. Titanium chamber study in rats. In: Buchhorn W HG (ed) Ceramic implant materials in orthopedic surgery. Accepted for publicationGoogle Scholar
  9. 9.
    Aspenberg P, Wang JS (1994) Basic fibroblast growth factor. Dose and time-dependence in rats. Trans Orthop Res Soc 19: 181Google Scholar
  10. 10.
    Bonewald LF, Mundy GR (1990) Role of transforming growth factor beta in bone remodelling. Clin Orthop 250: 261 – 276PubMedGoogle Scholar
  11. 11.
    Constantz BR, Young SW, Kienapfel H, Dahlen BL, Summer DR, Turner TM, Urban RM, Galante JO, Goodman SB, Gunasekaran S (1994) Calcium phosphate cement in a rabbit femoral canal and a canine humeral plug model: A pilot investigation. Materials Research Society symposium proceedings, Vol 252. Tissue-inducing biomaterials (ed: Cima LG, Ron ES )Google Scholar
  12. 12.
    Gardeniers JWM (1988) Behaviour of normal, avascular and revascularizing cancellous bone in the femoral head of an African pygmy goat. ISBN 90-9002151-5 Thesis, NijmegenGoogle Scholar
  13. 13.
    Glimcher MJ, Kenzora JE (1979a) The biology of osteonecrosis of the human femoral head and its clinical implications: I Tissue biology. Clin Orthop 38: 284 – 309Google Scholar
  14. 14.
    Glimcher MJ, Kenzora JE (1979b) The biology of osteonecrosis of the human femoral head and its clinical implications: II. The pathological changes in the femoral head as an organ in the hip joint. Clin Orthop 139: 283 – 312Google Scholar
  15. 15.
    Glimcher MJ, Kenzora JE (1979c) The biology of osteonecrosis of the human femoral head and its clinical implications: III. Discussion of the etiology and genesis of the pathological sequelae; comments on treatment. Clin Orthop 140: 273 – 312Google Scholar
  16. 16.
    Goodman SB (1994) The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits: Thesis Acta Orthop Scand [Suppl 258] 65: 1 – 43Google Scholar
  17. 17.
    Goodman S, Aspenberg P (1993) Mechanical stimulation and the differentiation of hard tissues. Biomaterials 14: 563 – 569PubMedCrossRefGoogle Scholar
  18. 18.
    Goodman SB, Aspenberg P, Wang JS, Doshi A, Regula D, Emmanual J, Lidgren L (1993) Cement particles inhibit bone ingrowth into titanuim chambers implanted in the rabbit. Acta Orthop Scand 64: 627 – 633PubMedCrossRefGoogle Scholar
  19. 19.
    Hallen LG (1996) Heterologous transplantation of Kiel bone. An experimental and clinical study. Acta Orthop Scand 37: 1 – 19Google Scholar
  20. 20.
    Hooten Jr JP, Engh Jr CA, Engh CA (1994) Failure of structural acetabular allograft in cementless revision hip arthroplasty. J Bone Joint Surg (Br) 76: 419 – 422Google Scholar
  21. 21.
    Hopf A (1963) Citation from Haasch K. Klinische Erfahrungen mit dem Kieler Span. Der Chirurg 34: 21Google Scholar
  22. 22.
    Katthagen B-D (1986) Knochenregeneration mit Knochenersatzmaterialien. Eine tierexperi- mentelle Studie In: Hefte zur Unfallheilkunde. Berlin: SpringerGoogle Scholar
  23. 23.
    Kalebo P, Jacobsson M (1988) Recurrent bone generation in titanium implants. Biomaterials 9: 295 – 301PubMedCrossRefGoogle Scholar
  24. 24.
    Maatz R, Bauermeister AB (1961) Klinische Erfahrungen mit dem Kieler Span. Langenbeck Arch Chir 208: 239CrossRefGoogle Scholar
  25. 25.
    Maatz R, Lent W, Graff R (1954) Spongiosa test on bone graft. J Bone Joint Surg (Am) 36: 721Google Scholar
  26. 26.
    Mulroy RD, Harris WH (1990) Failure of acebular autogenous grafts in total hip arthroplasty. Increasing incidence: a follow-up note. J Bone Joint Surg Am 72: 1536 – 1540PubMedGoogle Scholar
  27. 27.
    Oursler MJ (1992) Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Mineral Res 9: 443CrossRefGoogle Scholar
  28. 28.
    Ramani PS, Kalbag RM, Sengupta RP (1975) Cervical spinal interbody fusion with Kiel bone. Br J Surg 62: 147 – 150PubMedCrossRefGoogle Scholar
  29. 29.
    Schnettler R, Dingeldein E, Wahlig H, Tausch W (1992) Potential of porous HA and bFGF loaded porous HA on bone repair in cancellous bone in mini pigs. Trans World Biomat Congr 4: 260Google Scholar
  30. 30.
    Schweiberer L (1970) Experimentelle Untersuchungen von Knochentransplantaten mit Unveran- derter und mit Denaturierter Knochengrundsubstanz. Ein Beitrag zur kausalen Osteogenese. In: Hefte zur Unfallheilkunde. Berlin: SpringerGoogle Scholar
  31. 31.
    Sweet DE, Madewell DJE (1988) Pathogenesis of osteonecrosis. In: Resnick D, Niwayama G (eds) Diagnosis of bone an joint disorders. London: Saunders WBGoogle Scholar
  32. 32.
    Thoren K, Aspenberg P, Thorngren K-G (1993) Lipid extraction decreases the specific immun¬ologic response to bone allograft in rabbits. Acta Orthop Scand 64: 44 – 46PubMedCrossRefGoogle Scholar
  33. 33.
    Thoren K, Aspenberg P (1993) Effects of basic fibroblast growth factor on bone allografts. A study using bone harvest chambers in rabbits. Ann Surg Gyn 82: 129 – 135Google Scholar
  34. 34.
    Thoren K, Aspenberg P, Thorngren K-G (1995) Lipid-extracted bank bone. Bone conductive and mechanical properties. Clin Orthop 311: 232 – 246PubMedGoogle Scholar
  35. 35.
    Thoren K, Aspenberg P (1995) Increased bone ingrowth distance into lipid extracted bank bone at 6 weeks. A titanuim chamber study in allogenic and syngenic rats. Arch Orthop Trauma Surg 114: 167 – 171PubMedCrossRefGoogle Scholar
  36. 36.
    Wang JS, Aspenberg P (1994) Basic fibroblast growth factor increases allograft incorporation. Bone chamber study in rats. Acta Orthop Scand 65: 27 – 31PubMedGoogle Scholar
  37. 37.
    Wipperman BW, Zwipp H, Junge P, Saeman T, Tischerne H (1994) Healing of a segmental defect in the sheep tibia filled with a hydroxyapatite ceramic augmented by basic fibroblast growth factor and autologous bone marrow. Trans Orthop Res Soc 19: 545Google Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • Per Aspenberg
    • 1
  1. 1.Department of OrthopaedicsLund University HospitalLundSweden

Personalised recommendations