Advertisement

A Framework for Physically-Based Information Visualization

  • T. C. Sprenger
  • M. H. Gross
  • A. Eggenberger
  • M. Kaufmann
Part of the Eurographics book series (EUROGRAPH)

Abstract

The following paper describes a framework for the visualization and analysis of economic data. It can be employed in the context of risk analysis, stock prediction and other tasks being important in the context of banking. The system bases on a quantification of the similarity of related objects, which governs the parameters of a mass-spring system, organized as two concentric spheres. More specifically, we initialize all information units onto the surface of the inner sphere and attach them with springs to the outer sphere. Since the spring stiffnesses correspond to the computed similarity measures, the system converges into an energy minimum, which reveals multidimensional relations and adjacencies in terms of spatial neighborhoods. In order to simplify complex setups we propose an additional clustering algorithm for postprocessing. Furthermore, depending on the application scenario we support different topologic arrangements of related objects. In addition, we implemented various interaction techniques allowing semantic analysis of the underlying data sets. The versatility of our approach is illustrated by two examples, namely a comparison of agricultural productivity and an analysis of the relation between interest rates and other economic data.

Keywords

Related Object Information Space Spring Stiffness Outer Sphere Information Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gross, R. Koch: Visualization of Multidimensional Shape and Texture Features in Laser Range Data using Complex-Valued Gabor Wavelets, IEEE-Transactions on Visualization and Computer Graphics, Vol. 1, No. 1, pp. 44 – 59, 1995CrossRefGoogle Scholar
  2. 2.
    A. Witkin, D. Baraff, M. Kass: Physically-Based Modeling, SIGGRAPH tutorial course Notes No. 34, 1995Google Scholar
  3. 3.
    M. Harada, A. Witkin, D. Baraff: Interactive Physically-Based Manipulation of Discrete/Continuous Models, Proceedings Siggraph 95, pp. 199 – 208, 1995Google Scholar
  4. 4.
    J. Carriere, R. Katzman: Research Report — Interacting with Huge Hierarchies: Beyond Cone Trees, Proceedings of the IEEE Info. Vis. 95, pp. 74 – 81, 1995Google Scholar
  5. 5.
    J. Wise, et al.: Visualizing the Non-Visual: Spatial analysis and Interaction with Information from text Documents, Proceedings of the IEEE Info. Vis. 95, pp. 51 – 58, 1995Google Scholar
  6. 6.
    F. Young, P. Rheingans: Visualizing Strucutre in High-Dimensional Multivariate Data, IBM Journal of Research and Development, Vol. 35, No. 1 /2, pp. 97 – 107, 1991CrossRefGoogle Scholar
  7. 7.
    R. Hendley, et al.: Case Study — Narcissus: Visualizing Information, Proceedings of the IEEE Information Visualisation 95, pp. 90 – 96, 1995Google Scholar
  8. 8.
    . J. Nievergelt, K. Hinrichs: Algorithms and Data Structures with Applications to Graphics and geometry. Englewood Cliffs: Prentice Hall, 1993Google Scholar
  9. 9.
    .A. S. Glassner: Principles of Digital Image Synthesis, Morgan Kaufmann Publishers,San Francisco, 1995Google Scholar
  10. 10.
    T. H. Cormen, C. E. Leiserson, ans R. L. Rivest: Introduction to Algorithms, MIT Press, Cambridge, Massachusetts, 1994R. Koch, M. Gross, et al.: Simulating Facial Surgery Using Finite Element Models, Proceedings of SIGGRAPH 96, pp. 421 – 428, 1996Google Scholar
  11. 11.
    A. Frick, A. Ludwig and H. Mehldau: A fast adaptive layout algorithm for undirected graphs, Proceedings of Graph Drawing 94, LNCS 894, Springer Verlag 1995Google Scholar
  12. 12.
    I. Bruss, A. Frick: Fast Interactive 3-D Graph Visualization, Proceedings of Graph Drawing 95, Springer Verlag, LNCS 1027, p. 99 – 110Google Scholar
  13. 13.
    R. J. Hendley, N. S. Drew: Visualisation of complex systems, http:// ww.cs.bham.ac.ukGoogle Scholar
  14. 14.
    M. Chalmers: A Linear Time Layout Algorithm for Visualizing High-Dimensional Data, Proceedings of the IEEE Information Visualization 96, pp. 127 – 132, 1996Google Scholar
  15. 15.
    A. Witkin: Particle System Dynamics, SIGGRAPH 96 Course Notes 34, pp C1–C12, 1996Google Scholar
  16. 16.
    A. Wood, et al.: HyperSpace: Web Browsing with Visualisation. Third International World-Wide Web Conference, Poster Proceedings, Darmstadt, Germany, pp. 21 – 25, 1995Google Scholar
  17. 17.
    T. R. Henry, S. E. Hudson: Interactive Graph Layout, Proceedings of the ACM SIGGRAPH Symposium, Proceedings ACM Siggraph Symposium on UI Software, 1991Google Scholar
  18. 18.
    C. L. Bentley: Animating Multidimensional Scaling to Visualize N-Dimensional Data Sets, Proceedings of the IEEE Information Visualisation 96, pp. 72 – 73, 1996CrossRefGoogle Scholar
  19. 19.
    K. Fukunaga: Introduction to Statistical Pattern Recognition. 2nd Edition, New York: Academic Press, 1990MATHGoogle Scholar
  20. 20.
    S. Card, S. G. Eick, N. Gershon: Information Visualization, SIGGRAPH 96 Course Notes 8, 1996Google Scholar
  21. 21.
    CGRG Homepage, ETH Zurich, http://www.inf.ethz.ch/department/IS/cg/html/ research/infovis.htmGoogle Scholar
  22. 22.
    M. H. Gross, T. C. Sprenger, J. Finger: Visualizing Information on a Sphere, Technical Report, ETH Zurich, 1997Google Scholar

Copyright information

© Springer-Verlag/Wein 1997

Authors and Affiliations

  • T. C. Sprenger
    • 1
  • M. H. Gross
    • 1
  • A. Eggenberger
    • 1
  • M. Kaufmann
    • 2
  1. 1.Computer Science DepartmentSwiss Federal Institute of TechnologyETH ZürichSwitzerland
  2. 2.Swiss Bank CorporationIT-Camp BaselSwitzerland

Personalised recommendations