The Process of Motion Capture: Dealing with the Data

  • Bobby Bodenheimer
  • Chuck Rose
  • Seth Rosenthal
  • John Pella
Part of the Eurographics book series (EUROGRAPH)


This paper presents a detailed description of the process of motion capture, whereby sensor information from a performer is transformed into an articulated, hierarchical rigid-body object. We describe the gathering of the data, the real-time construction of a virtual skeleton which a director can use for immediate feedback, and the offline processing which produces the articulated object. This offline process involves a robust statistical estimation of the size of the skeleton and an inverse kinematic optimization to produce the desired joint angle trajectories. Additionally, we discuss a variation on the inverse kinematic optimization which can be used when the standard approach does not yield satisfactory results for the special cases when joint angle consistency is desired between a group of motions. These procedures work well and have been used to produce motions for a number of commercial games.


Joint Angle Motion Capture Inverse Kinematic Motion Capture Data Vector Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Badler, N. I., Hollick, M. J., and Granieri, J. P. Real-time control of a virtual human using minimal sensors. Presence 2, 1 (1993), 82–86.Google Scholar
  2. [2]
    Badler, N. I., Phillips, C. B., and Webber, B. L. Simulating Humans: Computer Graphics Animation and Control. Oxford University Press, Oxford, UK, 1993.MATHGoogle Scholar
  3. [3]
    Bruderlin, A., and Williams, L. Motion signal processing. In Computer Graphics (Aug. 1995), pp. 97–104. Proceedings of SIGGRAPH 95.Google Scholar
  4. [4]
    Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Academic Press, 1981.MATHGoogle Scholar
  5. [5]
    Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. Robust Statistics: The Approach Based on Influence Functions. John H. Wiley, New York, 1986.Google Scholar
  6. [6]
    Hars, A. Masters of motion. Computer Graphics World (Oct. 1996), 26–34.Google Scholar
  7. [7]
    Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’brien, J. F. Animating human athletics. In Computer Graphics (Aug. 1995), pp. 71–78. Proceedings of SIGGRAPH 95.Google Scholar
  8. [8]
    Houy, D. R. Range of motion in college males. Presented at the Conference of the Human Factors Society, Santa Monica, CA, 1983.Google Scholar
  9. [9]
    Maestri, G. Capturing motion. Computer Graphics World (1995), 47–51.Google Scholar
  10. [10]
    Maiocchi, R. 3-D character animation using motion capture. In Interactive Computer Animation, N. Magnetat-Thalmann and D. Thalmann, Eds. Prentice-Hall, London, 1996, pp. 10–39.Google Scholar
  11. [11]
    Maurel, W., Thalmann, D., Hoffmeyer, P., Beylot, P., Gingins, P., Kalra, P., and Thalmann, N. M. A biomechanical musculoskeletal model of human upper limb for dynamic simulation. In Computer Animation and Simulation ’96 (Aug. 1996), R. Boulic and G. Hégron, Eds., pp. 121–136.CrossRefGoogle Scholar
  12. [12]
    Molet, T., Boulic, R., and Thalmann, D. A real time anatomical converter for human motion capture. In Computer Animation and Simulation ’96 (Aug. 1996), R. Boulic and G. Hégron, Eds., pp. 79–94.CrossRefGoogle Scholar
  13. [13]
    Perlin, K. Real time responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics 1, 1(Mar. 1995), 5–15.CrossRefGoogle Scholar
  14. [14]
    Rose, C. F., Guenter B., Bodenheimer, B., and Cohen, M. Efficientgeneration of motion transitions using spacetime constraints. In Computer Graphics (Aug. 1996), pp. 147–154. Proceedings of SIGGRAPH 96.Google Scholar
  15. [15]
    Witkin, A., and Popović, Z. Motion warping. In Computer Graphics (Aug. 1995), pp. 105–108. Proceedings of SIGGRAPH 95.Google Scholar
  16. [16]
    Zhao, J., and Badler, N.I. Inverse kinematics positioning using non-linear programming for highly articulated figures. ACM Trans. Gr. 13, 4 (Oct. 1994), 313–336.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1997

Authors and Affiliations

  • Bobby Bodenheimer
    • 1
    • 2
  • Chuck Rose
    • 1
    • 2
  • Seth Rosenthal
    • 1
    • 3
  • John Pella
    • 1
    • 3
  1. 1.One Microsoft WayRedmodeUSA
  2. 2.Microsoft ResearchUSA
  3. 3.Interactive Media ProductionMicrosoftUSA

Personalised recommendations