The role of the autonomous nervous system in the dialogue between the brain and immune system

  • K. Schauenstein
  • I. Rinner
  • P. Felsner
  • P. Liebmann
  • H. S. Haas
  • D. Hofer
  • A. Wölfler
  • W. Korsatko
Part of the Key Topics in Brain Research book series (KEYTOPICS)


The concept of an extrinsic regulation of the immune system through neuroendocrine signals is well established, as is the fact that the immune system in turn informs the brain about contacts with antigens via “immunotransmitters”, i.e. cytokines and/or hormones with central effects [1]. All these data that have accumulated during the last twenty years have contributed to the vision of the immune system as “the sixth sense” [2]. While there is certainly still more work needed to define the physiology of this concept in all details, strong evidence has been obtained that the immune-neuroendocrine dialogue is of relevance for the homeostasis of the immune response, as defects in the activation of the hypothalamo-pituitary-adrenal (HPA) axis by immune signals were found to be associated with and/or to predispose to spontaneously occurring [3] and experimentally induced autoimmune diseases in animal models [4, 5], and there is evidence that the same is true also in humans [6]. A large body of more recent literature data strongly suggests that this dialogue involves not only the hypothalamus, but several other brain areas, notably the structures of the “Limbic System” (for review see [7]).


Autonomous Nervous System Cholinergic System Cholinergic Receptor Thymic Lymphocyte Murine Thymocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cotman CW, Brinton RE, Galaburda A, McEwen B, Schneider D (1987) The neuro-immune-endocrine connection. Raven Press, New YorkGoogle Scholar
  2. [2]
    Blalock JE (1994) The immune system - our sixth sense. The Immunologist 2: 8 – 15Google Scholar
  3. [3]
    Schauenstein K, Faessler R, Dietrich H, Schwarz S, Kroemer G, Wick G (1987) Disturbed immune-endocrine communication in autoimmune disease. Lack of corticosterone response to immune signals in obese strain chickens with spontaneous autoimmune thyroiditis. J Immunol 139: 1830 – 1833PubMedGoogle Scholar
  4. [4]
    Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW, Wilder RL (1989) Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA 86: 4771 – 4775PubMedCrossRefGoogle Scholar
  5. [5]
    Mason D, MacPhee I, Antoni F (1990) The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology 70: 1 – 5PubMedGoogle Scholar
  6. [6]
    Berczi I, Baragar FD, Chalmers IM, Keystone EC, Nagy E, Warrington RJ (1993) Hormones in self tolerance and autoimmunity: a role in pathogenesis of rheumatoid arthritis? Autoimmunity 16: 45 – 56PubMedCrossRefGoogle Scholar
  7. [7]
    Haas HS, Schauenstein K (1997) Neuroimmunomodulation via limbic structures - the neuroanatomy of psychoimmunology. Progr Neurobiol 52: 195 – 222CrossRefGoogle Scholar
  8. [8]
    Keller SE, Schleifer SJ, Demetrikopoulos MK (1991) Stress-induced changes in immune function in animals: hypothalamo-pituitary-adrenal influences. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, 2nd edn. Academic Press, New York, pp 771 – 787Google Scholar
  9. [9]
    Rinner I, Schauenstein K, Mangge H, Porta S, Kvetnansky R (1992) Opposite effects of mild and severe stress on in vitro activation of rat peripheral blood lymphocytes. Brain Behav Immun 6: 130 – 140PubMedCrossRefGoogle Scholar
  10. [10]
    Schauenstein K, Rinner I, Felsner P, Hofer D, Mangge H, Skreiner E, Liebmann P, Globerson A (1994) The role of the adrenergic/cholinergic balance in the immune-neuroendocrine circuit. In: Berczi I, Szelenyi J (eds) Advances in psychoneuroimmunology. Plenum Press, New York, pp 349 – 356Google Scholar
  11. [11]
    Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowski JA, Livnat S (1987) Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev 100: 225 – 260PubMedCrossRefGoogle Scholar
  12. [12]
    Khan MM, Sansoni P, Silverman ED, Engleman EG, Melmon KL (1986) Beta- adrenergic receptors on human suppressor, helper and cytolytic lymphocytes. Biochem Pharm 7: 1137 – 1142CrossRefGoogle Scholar
  13. [13]
    Titinchi S, Clark B (1984) Alpha2-adrenoceptors in human lymphocytes: direct K. Schauenstein et al. characterization by (3H) yohimbine binding. Biochem Biophys Res Commun 121: 1 – 7PubMedCrossRefGoogle Scholar
  14. [14]
    Korsatko W, Porta S, Sadjak A, Supanz S (1982) Implantation von Adrenalin- retard Tabletten zur Langzeituntersuchung in Ratten. Pharmazie 37: 565 – 568PubMedGoogle Scholar
  15. [15]
    Felsner P, Hofer D, Rinner I, Mangge H, Gruber M, Korsatko W, Schauenstein K (1992) Continuous in vivo treatment with catecholamines suppresses in vitro reactivity of rat peripheral blood T-lymphocytes via a-mediated mechanisms. J Neuroimmunol 37: 47 – 57PubMedCrossRefGoogle Scholar
  16. [16]
    Felsner P, Hofer D, Rinner I, Korsatko W, Schauenstein K (1995) In vivo immunosuppression by enhanced catecholamines in the rat model is due to activation of peripheral a2-receptors. J Neuroimmunol 57: 27 – 34PubMedCrossRefGoogle Scholar
  17. [17]
    Besedovsky HO, Del Rey A, Sorkin E, Da Prada M, Keller HH (1979) Immunoregulation mediated by the sympathetic nervous system. Cell Immunol 48: 346 – 355PubMedCrossRefGoogle Scholar
  18. [18]
    Liebmann P, Hofer D, Felsner P, Wolfler A, Schauenstein K (1996) Beta- blockade enhances adrenergic immunosuppression in rats via inhibition of melatonin release. J Neuroimmunol 67: 137 – 142PubMedCrossRefGoogle Scholar
  19. [19]
    Liebmann P, Wolfler A, Schauenstein K (1997) Melatonin and the immune system. Int Arch Allergy Immunol 112: 203 – 211PubMedCrossRefGoogle Scholar
  20. [20]
    Bulloch K (1988) A comparative study of the autonomous nervous system innervation of the thymus in the mouse and chicken. Int J Neurosci 40: 129 – 140PubMedCrossRefGoogle Scholar
  21. [21]
    Nance DM, Hopkins DA, Bieger D (1987) Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun 1: 134 – 147PubMedCrossRefGoogle Scholar
  22. [22]
    Felten SY, Felten DL (1991) Innervation of lymphoid tissue. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, 2nd edn. Academic Press, New York, pp 27 – 69Google Scholar
  23. [23]
    Maslinski W (1989) Cholinergic receptors on lymphocytes. Brain Behav Immun 3: 1 – 14PubMedCrossRefGoogle Scholar
  24. [24]
    Szelenyi J, Palldi-Haris P, Hollan S (1987) Changes in the cholinergic system due to mitogenic stimulation. Immunol Lett 16: 49 – 54PubMedCrossRefGoogle Scholar
  25. [25]
    Iliano G, Tell GPE, Segal MI, Cuatrecasas P (1973) Guanosine 3′,5′-cyclic monophosphate and the action of insulin and acetylcholine. Proc Natl Acad Sci USA 70: 2443 – 2447CrossRefGoogle Scholar
  26. [26]
    Strom TB, Sytkowski AT, Carpenter CB, Merill JB (1974) Cholinergic augmentation of lymphocyte mediated cytotoxicity. A study of the cholinergic receptor of cytotoxic T lymphocytes. Proc Natl Acad Sci USA 71: 1330 – 1333PubMedCrossRefGoogle Scholar
  27. [27]
    Rossi A, Tria MA, Baschieri S, Doria G, Frasca D (1989) Cholinergic agonists selectively induce proliferative responses in the mature subpopulation of murine thymocytes. J Neurosci Res 24: 369 – 373PubMedCrossRefGoogle Scholar
  28. [28]
    Rinner I, Schauenstein K (1991) The parasympathetic nervous system takes part in the immuno-neuroendocrine dialogue. J Neuroimmunol 34: 165 – 172PubMedCrossRefGoogle Scholar
  29. [29]
    Rinner I, Kukulansky T, Felsner P, Skreiner E, Globerson A, Kasai M, Hirokawa K, Korsatko W, Schauenstein K (1994) Cholinergic stimulation modulates apoptosis and differentiation of murine thymocytes via a nicotinic effect on thymic epithelium. Biochem Biophys Res Comm 203: 1057 – 1062PubMedCrossRefGoogle Scholar
  30. [30]
    Fonnum FA (1975) Rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407 – 409PubMedCrossRefGoogle Scholar
  31. [31]
    Rinner I, Schauenstein K (1993) Detection of choline-acetytransferase activity in lymphocytes. J Neurosci Res 35: 188 – 191PubMedCrossRefGoogle Scholar
  32. [32]
    Badamchian M, Damavancly H, Radojcic T, Bulloch K (1992) Choline O-ace- tyltransferase (ChAT) and muscarinic receptors in the Balb/C mouse thymus. Abstract, Satellite meeting of the 8th International Congress of Immunology “Advances in Psychoneuroimmunology” Budapest, AugustGoogle Scholar
  33. [33]
    Rinner I, Felsner P, Liebmann PM, Hofer D, Wolfler A, Globerson A. Schauenstein K (1997) Adrenergic cholinergic immunomodulation in the rat model - in vivo Veritas? Dev Immunol (in press)Google Scholar
  34. [34]
    Rinner I, Kawashima R. Schauenstein K (1997) Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation. J Neuroimmunol (in press)Google Scholar
  35. [35]
    Josefsson F, Bergquist J. Hkman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88:140–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1997

Authors and Affiliations

  • K. Schauenstein
    • 1
  • I. Rinner
    • 1
  • P. Felsner
    • 1
  • P. Liebmann
    • 1
  • H. S. Haas
    • 1
  • D. Hofer
    • 1
  • A. Wölfler
    • 1
  • W. Korsatko
    • 2
  1. 1.Department of General and Experimental PathologyAustria
  2. 2.Department of Pharmaceutical ChemistryUniversity of GrazAustria

Personalised recommendations