Neurochemical abnormalities in Alzheimer’s disease and Parkinson’s disease — a comparative review

  • W. Gsell
  • I. Strein
  • U. Krause
  • P. Riederer
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 51)


We report a meta-analysis of the brain neurochemical abnormalities in Alzheimer’s (AD) and Parkinson’s disease (PD). Evidence for oxidative stress, and disorders of energy metabolism and excitatory amino acids is presented for both disorders. However, limited data and conflicting findings preclude any definitive statement relating to differences and overlap between the two conditions.


Pyruvate Dehydrogenase Excitatory Amino Acid Quinolinic Acid Neurobiol Aging Glutamate Dehydrogenase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai H, Kobayashi K, Ichimiya Y, Kosaka K, Iizuka R (1984) A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging 5: 319–321.PubMedCrossRefGoogle Scholar
  2. Bowen DM, Davison AN, Francis PT, Palmer AM, Pearce BR, et al. (1985) Neurotransmitter and metabolic dysfunction in Alzheimer’s dementia: relationship to histopathological features. Interdiscipl Topics Geront 19: 156–174.Google Scholar
  3. Butterworth J, Tennant M, Yates CM (1988) Brain enzymes in agonal state and dementia. Biochem Soc Trans 17: 208–209.Google Scholar
  4. Cedarbaum JM, Sheu K, Harding B, Blass J, Agid F-J, et al. (1990) Deficiency of glutamate dehydrogenase in postmortem brain samples from Parkinsonian putamen. Ann Neurol 28: 111–112.PubMedCrossRefGoogle Scholar
  5. Cowburn RF, Barton AJL, Hardy JA, Wester P, Winblad B (1987) Region-specific defects in glutamate and gamma-aminobutyric acid innervation in Alzheimer’s disease. Biochem Soc Trans 15: 505–506.Google Scholar
  6. Cowburn R, Hardy J, Roberts P, Briggs R (1988) Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer’s disease. Brain Res 452: 403–407.PubMedCrossRefGoogle Scholar
  7. Cowburn RF, Hardy JA, Briggs RS, Roberts P (1989) Characterisation, density, and distribution of kainate receptors in normal and Alzheimer’s diseased human brain. J Neurochem 52: 140–147.PubMedCrossRefGoogle Scholar
  8. Cross AJ, Crow TJ, Ferrier IN, Johnson JA (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7: 3–7.PubMedCrossRefGoogle Scholar
  9. Cross AJ, Slater P, Simpson M, Royston C, Deakin JFW, et al. (1987) Sodium dependent D-3H-aspartate binding in cerebral cortex in patients with Alzheimer’s and Parkinson’s disease. Neurosci Lett 7: 213–217.CrossRefGoogle Scholar
  10. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid YJ (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389.PubMedCrossRefGoogle Scholar
  11. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 72: 1236–1239.Google Scholar
  12. Ellison DW, Beai MF, Mazurek MF, Bird ED, Martin JB, et al. (1986) A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann Neurol 20: 616–621.PubMedCrossRefGoogle Scholar
  13. Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49: 1–20.PubMedCrossRefGoogle Scholar
  14. Geddes JW, Chang-Chui H, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399: 156–161.PubMedCrossRefGoogle Scholar
  15. Gilbert JJ, Kish SJ, Chang LJ, Morito C, Shannak K, et al. (1988) Dementia, parkinsonism, and motor neuron disease: neurochemical and neuropathological correlates. Ann Neurol 24: 688–691.PubMedCrossRefGoogle Scholar
  16. Gramsbergen JBP, Mountjoy CQ, Rossor MN, Reynolds GP, Roth M, et al. (1987) A correlative study on hippocampal cation shifts and amino acids and clinico-pathologi-cal data in Alzheimer’s disease. Neurobiol Aging 8: 487–494.PubMedCrossRefGoogle Scholar
  17. Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP (1985) Alterations in L-glutamate binding in Alzheimer’s and Huntington’s disease. Science 227: 1496–1499.PubMedCrossRefGoogle Scholar
  18. Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-3H-glutamate binding. J Neurochem 48: 543–551.PubMedCrossRefGoogle Scholar
  19. Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, et al. (1986) Glutamate deficits in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 50: 356–357.Google Scholar
  20. Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, et al. (1987) Region-specific loss of glutamate innervation in Alzheimer’s disease. Neurosci Lett 73: 77–80.PubMedCrossRefGoogle Scholar
  21. Jansen KLR, Faull RLM, Dragunow M, Synek BL (1990) Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensine, adenosine, benzodiazepine, serotonin and opioid receptors — an autoradiographic study. Neuroscience 39: 613–627.PubMedCrossRefGoogle Scholar
  22. Kish SJ, Morito C, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58: 343–346.PubMedCrossRefGoogle Scholar
  23. Marklund SL, Adolfsson R, Gottfries CG, Winblad B (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325.PubMedCrossRefGoogle Scholar
  24. Maritila RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease. J Neurol Sci 86: 321–331.CrossRefGoogle Scholar
  25. McGeer EG, Singh E, McGeer PL (1987) Sodium-dependent glutamate binding in senile dementia. Neurobiol Aging 8: 219–223.PubMedCrossRefGoogle Scholar
  26. McGeer EG, Singh E A, McGeer PL (1987) Gamma-glutamyltransf erase: normal cortical levels in Alzheimer disease. Alzheimer Dis Assoc Disord 1: 38–42.PubMedCrossRefGoogle Scholar
  27. Mizuno Y, Suzuki K, Ohta S (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and preliminary observation in Parkinson’s disease. J Neurol Sci 96: 49–57.PubMedCrossRefGoogle Scholar
  28. Montis de G, Beaumont K, Javoy-Agid F, Agid Y, Constandinidis JJ (1982) Glycine receptors in human substantia nigra as defined by (3H)- strychnine binding. J Neurochem 38: 718–724.PubMedCrossRefGoogle Scholar
  29. Moroni F, Lombardi G, Robitaille Y, Etienne P (1986) Senile dementia and Alzheimer’s disease: lack of changes of the cortical content of quinolinic acid. Neurobiol Aging 7: 249–253.PubMedCrossRefGoogle Scholar
  30. Mouradian MM, Contreras PC, Monahan JB, Chase TN (1988) 3H-MK-801 binding in Alzheimer’s disease. Neurosci Lett 93: 225–230.PubMedCrossRefGoogle Scholar
  31. Palmer AM, Procter AW, Stratmann GC, Bowen DM (1986) Excitatory amino acid-releasing and cholinergic neurones in Alzheimer’s disease. Neurosci Lett 66:199–204.PubMedCrossRefGoogle Scholar
  32. Pearce BR, Bowen DM (1984) 3H-Kainic acid binding and choline acetyltransferase activity in Alzheimer’s dementia. Brain Res 310: 376–378.PubMedCrossRefGoogle Scholar
  33. Pearce BR, Palmer AM, Bowen DM, Wilcock GK, Esiri MM, et al. (1984) Neurotransmitter dysfunction and atrophy of the caudate nucleus in Alzheimer’s disease. Neurochem Pathol 2: 221–232.PubMedGoogle Scholar
  34. Perry EK (1986) The cholinergic hypothesis ten years on. Br Med Bull 42: 63–69.PubMedGoogle Scholar
  35. Perry E, Perry R, Tomlinson BE, Blessed G, Gibson P (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18: 105–110.PubMedCrossRefGoogle Scholar
  36. Perry EK, Blessed G, Tomlinson BE, Perry RH, Crow TJ, et al. (1981) Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 2: 251–256.PubMedCrossRefGoogle Scholar
  37. Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67: 269–274.PubMedCrossRefGoogle Scholar
  38. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33: 305–310.PubMedCrossRefGoogle Scholar
  39. Perry TL, Javoy-Agid F, Agid Y, Fibiger HC (1983) Striatal GABAergic neuronal activity is not reduced in Parkinson’s disease. J Neurochem 40: 1120–1123.PubMedCrossRefGoogle Scholar
  40. Perry TL, Yong VW, Bergeron C, Hansen S, Jones K (1987) Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer’s disease. Ann Neurol 21: 331–336.PubMedCrossRefGoogle Scholar
  41. Procter AW, Palmer AM, Bowen DM, Murphy E, Neary D (1987) Glutamatergic denervation in Alzheimer’s disease — A cautionary note. J Neurol Neurosurg Psychiatry 50: 825.PubMedCrossRefGoogle Scholar
  42. Procter AW, Lowe SL, Palmer AM, Francis PT, Esiri M, et al. (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 84: 125–140.PubMedCrossRefGoogle Scholar
  43. Procter AW, Palmer AM, Francis PT, Lowe SL, Neary D, et al. (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50: 790–802.PubMedCrossRefGoogle Scholar
  44. Procter AW, Stirling JM, Stratmann GC, Cross AJ, Bowen DM (1989) Loss of glycine-dependent radioligand binding to the N-methyl-D-aspartate-phencyclidine receptor complex in patients with Alzheimer’s disease. Neurosci Lett 101: 62–66.PubMedCrossRefGoogle Scholar
  45. Procter AW, Wong EHF, Stratmann GC, Lowe SL, Bowen DM (1989) Reduced glycine stimulation of (3H)-MK-801 binding in Alzheimer’s disease. Neurochem 53: 698–704.CrossRefGoogle Scholar
  46. Reinikainen KJ, Paljärvi L, Huuskonen M, Soininen H, Laakso M, et al. (1988) A postmortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci 84: 101–116.PubMedCrossRefGoogle Scholar
  47. Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi CJ (1988) Biochemical fundamentals of Parkinson’s disease. Mt Sinai J Med 55: 21–28.PubMedGoogle Scholar
  48. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520.PubMedCrossRefGoogle Scholar
  49. Saggu H, Cooksey J, Dexter D, Wells FR, Lees AJ (1989) A selective increase in particulate superoxide dismutase activity in Parkinsonian substantia nigra. J Neurochem 53: 692–697.PubMedCrossRefGoogle Scholar
  50. Sasaki H, Muramoto O, Kanazawa I, Arai H (1986) Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol 19: 263–269.PubMedCrossRefGoogle Scholar
  51. Schapira A, Cooper M, Dexter D, Clark J, Jenner P, et al. (1990) Mitochondrial complex 1 deficiency in Parkinson’s disease. J Neurochem 54: 823–827.PubMedCrossRefGoogle Scholar
  52. Schapira AHV, Mann VM, Cooper JM (1990) Anatomic and disease specifity of NADH CoQ reductase (complex 1) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145PubMedCrossRefGoogle Scholar
  53. Sherif F, Gottfries CG, Alafuzoff I, Oreland L (1992) Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. J Neural Transm [PD-Sect] 4: 227–240.CrossRefGoogle Scholar
  54. Sheu KFR, Kim YT, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann Neurol 17: 444–449.PubMedCrossRefGoogle Scholar
  55. Simpson MDC, Royston MC, Deakin JFW, Cross AJ, Mann DMA, et al. (1988) Regional changes in 3H-D-aspartate and 3H-TCP binding sites in Alzheimer’s disease brains. Brain Res 462: 76–82.PubMedCrossRefGoogle Scholar
  56. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP (1988) Increased iron (3) and total iron content in post-mortem substantia nigra of Parkinsonian brain. J Neural Transm 74: 199–205.PubMedCrossRefGoogle Scholar
  57. Sofic E, Halket J, Przyborowska A, Riederer P, Beckmann H, et al. (1989) Brain quinolinic acid in Alzheimer’s dementia. Eur Arch Psychiatry Neurol Sci 239: 177–179.PubMedCrossRefGoogle Scholar
  58. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13: 72–78.PubMedCrossRefGoogle Scholar
  59. Tarbit I-, Perry EK, Perry RH, Blessed G, Tomlinson BE (1980) Hippocampal free amino acids in Alzheimer’s disease. J Neurochem 35: 1246–1249.PubMedCrossRefGoogle Scholar
  60. Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin TJ (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16: 310–314.PubMedGoogle Scholar
  61. Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 55: 1624–1630.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1997

Authors and Affiliations

  • W. Gsell
    • 1
    • 2
  • I. Strein
    • 1
  • U. Krause
    • 1
  • P. Riederer
    • 1
  1. 1.Department of Psychiatry, Clinical NeurochemistryUniversity of WürzburgWürzburgGermany
  2. 2.Department of Psychiatry, Clinical NeurochemistryWürzburgGermany

Personalised recommendations