Chronic administration of a partial agonist at strychnine-insensitive glycine receptors: a novel experimental approach to the treatment of ischemias

  • L. H. Fossom
  • P. Skolnick
Conference paper


During the past decade, converging lines of evidence have linked the abnormal release or leak of excitatory amino acids to the neurodegeneration associated with a wide range of pathologies including cerebral ischemias, Huntington’s disease, and AIDS dementia (Coyle and Robinson, 1987; Lipton, 1994; Meldrum, 1994). Pharmacological studies indicate that activation of both ionotropic and metabotropic glutamate receptors can substantially contribute to excitotoxic cell damage (Choi, 1992; Pizzi et al, 1993; Sheardown et al., 1993; Xue et al., 1994). Based on these findings, therapeutic strategies based on blunting or blocking glutamatergic transmission may be useful in treating a variety of neurodegenerative disorders.


NMDA Receptor Partial Agonist Cerebellar Granule Cell Neuroprotective Action Carotid Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakshi R, Faden AI (1990) Competitive and non-competitive NMDA antagonists limit dynorphin A-induced rat hindlimb paralysis. Brain Res 507: 1–5PubMedCrossRefGoogle Scholar
  2. Beaughard M, Michelin M, Massingham R (1990) Effects of the putative glycine antagonist HA-966 on the neurological and histological changes induced by transient global ischemia in rats and gerbils. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 275–280Google Scholar
  3. Boje K (1994) In vitro and in vivo studies with glycine partial agonists: a novel strategy for preventing NMDA receptor—mediated tissue damage. In: Palfreyman MG, Reynolds IJ, Skolnick P (eds) Direct and allosteric control of glutamate receptors. CRC Press, Boca Raton, pp 119–126Google Scholar
  4. Boje KM, Wong G, Skolnick P (1993) Desensitization of the NMDA receptor complex by glycinergic ligands in cerebellar cell cultures. Brain Res 603: 207–214PubMedCrossRefGoogle Scholar
  5. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23: 1261–1276PubMedCrossRefGoogle Scholar
  6. Evoniuk GE, Hertzman RP, Skolnick P (1991) A rapid method for evaluating the behavioral effects of dissociative anesthetics in mice. Psychopharmacol 105: 125–128CrossRefGoogle Scholar
  7. Fossom LH, Von Lubitz DKJE, Lin RC-S, Skolnick P (1995a) Neuroprotective actions of 1-aminocyclopropanecarboxylic acid, a partial agonist at strychnine-insensitive glycine sites. Neurol Res 17: 265–269PubMedGoogle Scholar
  8. Fossom LH, Basile AS, Skolnick P (1995b) Sustained exposure to 1-aminocyclopropanecarboxylic acid, a glycine partial agonist, alters NMDA receptor function and subunit composition. Mol Pharmacol 48: 981–987PubMedGoogle Scholar
  9. Hartley DM, Moyner H, Colamarino SA, Choi DW (1990) 7-Chlorokynurenate blocks NMDA receptor mediated neurotoxity in murine cortical culture. Eur J Neurosci 2: 291–295PubMedCrossRefGoogle Scholar
  10. Isaac L, van Zandt O’Malley T, Ristic H, Stewart P (1990) MK-801 blocks dynorphin A (l–13)-induced loss of the tail-flick reflex in the rat. Brain Res 531: 83–87PubMedCrossRefGoogle Scholar
  11. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241: 835–837PubMedCrossRefGoogle Scholar
  12. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36–41PubMedCrossRefGoogle Scholar
  13. Laurie DJ, Seeburg PH (1994) Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur J Pharmacol 268: 335–345PubMedCrossRefGoogle Scholar
  14. Layer RT, Bland LR, Skolnick P (1993) MK-801, but not drugs acting at strychnine-insensitive glycine receptors, attenuate methamphetamine nigrostriatal toxicity. Brain Res 625: 38–44PubMedCrossRefGoogle Scholar
  15. Lipton SA (1994) Ca2+, N-methyl-D-aspartate receptors, and AlDS-related neuronal injury. Int Rev Neurobiol 36: 1–27PubMedCrossRefGoogle Scholar
  16. Lombardi G, Moroni F, Moroni F (1994) Glutamate receptor antagonists protect against ischemia-induced retinal damage. Eur J Pharmacol 271: 489–495PubMedCrossRefGoogle Scholar
  17. Long JB, Skolnick P (1994) 1-Aminocyclopropanecarboxylic acid protects against dynorphin A-induced spinal injury. Eur J Pharmacol 261: 295–301PubMedCrossRefGoogle Scholar
  18. Long JB, Rigamonti DD, Oleshansky MA, Wingfield CP, Martinez-Arizala A (1994) Dynorphin A-induced rat spinal cord injury: evidence for excitatory amino acid involvement in a pharmacological model of ischemic spinal cord injury. J Pharmacol Exp Ther 269: 358–366PubMedGoogle Scholar
  19. Marvizon JC, Lewin AH, Skolnick P (1989) 1-Aminocyclopropane carboxylic acid: a potent and selective ligand for the glycine modulatory site of the N-methyl-D-aspartate receptor complex. J Neurochem 52: 992–994PubMedCrossRefGoogle Scholar
  20. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a hete—romeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70–74PubMedCrossRefGoogle Scholar
  21. Meldrum B (1994) Neuroprotection by NMDA and non-NMDA glutamate antagonists. In: Palfreyman MG, Reynolds IJ, Skolnick P (eds) Direct and allosteric control of glutamate receptors. CRC Press, Boca Raton, pp 127–138Google Scholar
  22. Miller R, La Grone J, Skolnick P, Boje KM (1992) High-performance liquid chromato¬graphic assay for 1-aminocyclopropanecarboxylic acid from plasma and brain. J Chromatogr 578: 103–108PubMedCrossRefGoogle Scholar
  23. Muir KW, Grosset DG, Gamzu E, Lees KR (1994) Pharmacological effects of the noncompetitive NMD A antagonist CNS 1102 in normal volunteers. Br J Clin Pharmacol 38: 33–38PubMedGoogle Scholar
  24. Patel J, Zinkand WC, Thompson C, Keith R, Salama A (1990) Role of glycine in the N-methyl-D-aspartate-mediated neuronal cytotoxicity. J Neurochem 54: 849–854PubMedCrossRefGoogle Scholar
  25. Pizzi M, Fallacara C, Arrighi V, Memo M, Spano PF (1993) Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells. J Neurochem 61: 683–689PubMedCrossRefGoogle Scholar
  26. Robinson MB, Coyle JT (1987) Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. FASEB J 1: 446–455PubMedGoogle Scholar
  27. Sheardown MJ, Suzdak PD, Nordholm L (1993) AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. Eur J Pharmacol 236: 347–353PubMedCrossRefGoogle Scholar
  28. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147PubMedCrossRefGoogle Scholar
  29. Skolnick P, Marvizon J, Jackson B, Monn J, Rice K, Lewin A (1989) Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropane-carboxylates. Life Sei 45: 1647–1655CrossRefGoogle Scholar
  30. Skolnick P, Miller R, Young A, Boje K, Trullas R (1992) Chronic treatment with 1-aminocyclopropane-carboxylic acid desensitizes behavioral responses to agents acting at the N-methyl-D-aspartate receptor complex. Psychopharmacol 107: 489–496CrossRefGoogle Scholar
  31. Sonsalla PK, Riordan DE, Heikkila RE (1991) Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice. J Pharmacol Exp Ther 256: 506–512PubMedGoogle Scholar
  32. Sveinbjornsdottir S, Sander JWAS, Upton D, Thompson PJ, Patsalos PN, Hirt D, Emre M, Lowe D, Duncan DS (1993) The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 16: 165–174PubMedCrossRefGoogle Scholar
  33. von Lubitz D, Lin R, McKenzie R, Devlin T, McCabe RT, Skolnick P (1992) A novel treatment of global cerebral ischemia with a glycine partial agonist. Eur J Pharmacol 219: 153–158CrossRefGoogle Scholar
  34. Wafford KA, Bain CJ, Le Bourdelles B, Whiting PJ, Kemp JA (1993) Preferential co-assembly of recombinant NMDA receptors composed of three different subunits. Neuro Report 4: 1347–1349Google Scholar
  35. Watson G, Lanthorn TH (1990) Pharmacological characteristics of cyclic homologues of glycine at the N-methyl-D-aspartate receptor associated glycine site. Neuropharmacol 29: 727–730CrossRefGoogle Scholar
  36. Williams K (1993) Ifenprodil discriminates subtypes of N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44: 851–859PubMedGoogle Scholar
  37. Witkin J, Steele T (1992) Effects of strychnine-insensitive glycine receptor ligands on discriminative stimulus effects of N-methyl-D-aspartate (NMDA) channel antago¬nists. Abstr Soc Neurosci 18: 447, #192.16Google Scholar
  38. Xue D, Huang Z-G, Barnes K, Lesiuk HJ, Smith KE, Buchan AM (1994) Delayed treatment with AMPA, but not NMDA, antagonists reduce neocortical infarction. J Cereb Blood Flow Metab 14: 251–261PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1997

Authors and Affiliations

  • L. H. Fossom
    • 1
  • P. Skolnick
    • 1
  1. 1.Laboratory of NeuroscienceNIH, NIDDK/LNBethesdaUSA

Personalised recommendations