Genetics of multiple sclerosis — how could disease-associated HLA-types contribute to pathogenesis?

  • R. Martin
Conference paper


Multiple sclerosis is a chronic demyelinating disease of the central nervous system in young adults. It is considered a T cell-mediated autoimmune disease which is probably triggered by exogenous events, e.g. infectious agents, in susceptible individuals. Population, family and twin studies indicate that genetic factors and most likely several genes are associated with disease, but it is clear from the concordance rates of identical twins (25–30%) that genetic background as well as exogenous or somatic events are required to develop disease. Among many candidate genes which have been analyzed during recent years, the strongest association was shown for genes of the HLA-class II complex, in particular HLA-DR15 Dw2 and -DQw6. At present, it is not clear how the expression of a particular HLA-class II gene translates into susceptibility to develop an organ-specific autoimmune disease. Potential explanations how this could occurr will be discussed.


Multiple Sclerosis Celiac Disease Human Leukocyte Antigen Myelin Basic Protein Human Leukocyte Antigen Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allegretta M, Albertini RJ, et al (1994) Homologies between T cell receptor junctional sequences unique to multiple sclerosis and T cells mediating experimental allergic encephalomyelitis. J Clin Invest 94: 105–109PubMedCrossRefGoogle Scholar
  2. Andersen LC, Beaty JS, et al (1991) Allelic polymorphism in transcriptional regulatory regions of HLA-DQβ genes. J Exp Med 173: 181–192PubMedCrossRefGoogle Scholar
  3. Baisch JM, Weeks T, et al (1990) Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med 322: 1836–1841PubMedCrossRefGoogle Scholar
  4. Beali SS, Concannon P, et al (1989) The germline repertoire of T cell receptor β-chain genes in patients with chronic progressive multiple sclerosis. J Neuroimmunol 21:59–66CrossRefGoogle Scholar
  5. Begovich AB, Helmuth RC, et al (1990) HLA-DP beta and susceptibility to multiple sclerosis: an analysis of caucasoid and Japanese patient populations. Hum Immunol 28: 365–372PubMedCrossRefGoogle Scholar
  6. Bertram J, Kuwert E (1982) HLA antigen frequencies in multiple sclerosis. Eur J Neurol 7: 74–79Google Scholar
  7. Bodmer JG, Marsh SGE, et al (1994) Nomenclature for factors of the HLA system, 1994. Hum Immunol 41: 1–20PubMedCrossRefGoogle Scholar
  8. Boylan KB, Takahashi N, et al (1990) DNA length polymorphism 5′ to the myelin basic protein gene is associated with multiple sclerosis. Ann Neurol 27: 291–297PubMedCrossRefGoogle Scholar
  9. Brown JH, Jardetzky TS, et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33–39PubMedCrossRefGoogle Scholar
  10. Brown MG, Driscoll J, et al (1991) Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353: 355–357PubMedCrossRefGoogle Scholar
  11. Bugawan TL, Angelini G, et al (1989) A combination of a particular HLA-DPb allele and an HLA-DQ heterodimer confers susceptibility to coeliac disease. Nature 339:470–473PubMedCrossRefGoogle Scholar
  12. Bulman DE, Ebers GC (1992) The geography of multiple sclerosis reflects genetic susceptibility. J Trop Geograph Neurol 2: 66–72Google Scholar
  13. Bulman DE, Armstrong H, et al (1991) Allele frequencies of the third component of complement (C3) in MS patients. J Neurol Neurosurg Psychiatry 54: 554–555PubMedCrossRefGoogle Scholar
  14. Burns J, Rosenzweig A, et al (1983) Isolation of myelin basic protein-reactive T cell lines from normal human blood. Cell Immunol 81: 435–440PubMedCrossRefGoogle Scholar
  15. Ebers GC, Dessa Sadovnick A (1994) The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol 54: 1–17PubMedCrossRefGoogle Scholar
  16. Filippi M, Horsfield MA, et al (1994) Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44: 635–641PubMedGoogle Scholar
  17. Francis DA, Batchelor JR, et al (1987) Multiple sclerosis in Northeast Scotland. An association with HLA-DQw1. Brain 110: 181–196PubMedCrossRefGoogle Scholar
  18. Fritz RB, McFarlin DE (1989) Encephalitogenic epitopes of myelin basic protein. In: Sercarz EE (ed) Antigenic determinants and immune response. Karger, Basel, pp 101–125 (Chem Immunol 46)CrossRefGoogle Scholar
  19. Fritz RB, Skeen MJ, et al (1985) Major histocompatibility complex-linked control of the murine immune response to myelin basic protein. J Immunol 134: 2328–2332PubMedGoogle Scholar
  20. Gaisner CN, Johnson MJ, et al (1987) Susceptibility to multiple sclerosis associated with immunoglobulin gamma 3 restriction fragment length polymorphism. J Clin Invest 79: 309–313CrossRefGoogle Scholar
  21. Gorodezky C, Najera R, et al (1986) Immunogenetic profile of multiple sclerosis in Mexicans. Hum Immunol 16: 364–374PubMedCrossRefGoogle Scholar
  22. Haegert DG, Francis GS (1993) HLA-DQ polymorphisms do not explain HLA class II associations with multiple sclerosis in two Canadian patient groups. Neurology 43: 1207–1210PubMedGoogle Scholar
  23. Hammond SR, English D, et al (1988) The clinical profile of MS in Australia. A comparison between medium-frequency and high-frequency prevalence zones. Neurology 38: 980–986PubMedGoogle Scholar
  24. Hillert J, Leng C, et al (1991) No association with germline T cell receptor betachain gene alleles or haplotypes in Swedish patients with multiple sclerosis. J Neuroimmunol 32: 141–147PubMedCrossRefGoogle Scholar
  25. Hillert J, Grönning M, et al (1992) An immimogenetic heterogeneity in multiple sclerosis. J Neurol Neurosurg Psychiatry 55: 887–890PubMedCrossRefGoogle Scholar
  26. Hirayama K, Matsushita S, et al (1987) HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature 327: 426–430PubMedCrossRefGoogle Scholar
  27. Jaraquemada D, Martin R, et al (1990) HLA-DR2a is the dominant restriction molecule for the cytotoxic T cell response to myelin basic protein in DR2Dw2 individuals. J Immunol 145: 2880–2885PubMedGoogle Scholar
  28. Kagnoff MF, Harwood JI, et al (1989) Structural analysis of the HLA-DR, -DQ, and –DP alleles on the celiac disease-associated HLA-DR3 (DRwl7) haplotype. Proc Natl Acad Sci USA 86: 6274–6278PubMedCrossRefGoogle Scholar
  29. Kotzin BL, Karuturi S, et al (1991) Preferential T-cell receptor Vβ-chain variable gene use in myelin basic protein-reactive T-cell clones from patients with multiple sclerosis. Proc Natl Acad Sci USA 88: 9161–9165PubMedCrossRefGoogle Scholar
  30. Kurdi A, Ayesh I, et al (1977) Different B-lymphocyte alloantigens associated with multiple sclerosis in Arabs and Northern Europeans. Lancet i: 1123–1125CrossRefGoogle Scholar
  31. Kurtzke JF (1985) Epidemiology of multiple sclerosis. In: Vinken PJ, Bruyn GW, Klawans HL, Koetsier JC (eds) Handbook of clinical neurology. Demyelinating diseases. Elsevier, Amsterdam New York, pp 259–287Google Scholar
  32. Liblau R, van Endert PM, et al (1993) Antigen processing gene polymorphisms in HLA-DR2 multiple sclerosis. Neurology 43: 1192–1197PubMedGoogle Scholar
  33. Marrosu HG, Muntoni F, et al (1988) Sardinian multiple sclerosis is associated with HLA- DR4: a serological and molecular analysis. Neurology 38: 1749–1753PubMedGoogle Scholar
  34. Martin R, Jaraquemada D, et al (1990) Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 145: 540–548PubMedGoogle Scholar
  35. Martin R, Howell MD, et al (1991) A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173 (1): 19–24PubMedCrossRefGoogle Scholar
  36. Martin R, McFarland HF, et al (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187PubMedCrossRefGoogle Scholar
  37. Martin R, Utz U, et al (1992) Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87–106. J Immunol 148: 1359–1366PubMedGoogle Scholar
  38. Martin R, Voskuhl R, et al (1993) Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Ann Neurol 34:524–535PubMedCrossRefGoogle Scholar
  39. McCombe PA, Clark P, et al (1985) Alpha-1 antitrypsin phenotypes in demyelinating diseases: An association between demyelinating disease and the allele PiM3. Ann Neurol 18: 291–297CrossRefGoogle Scholar
  40. McFarland HF, Frank JA, et al (1992) Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol 32:758–766PubMedCrossRefGoogle Scholar
  41. McFarlin DE, McFarland HF (1982a) Multiple sclerosis, part 1. N Engl J Med 307:1183–1188PubMedCrossRefGoogle Scholar
  42. McFarlin DE, McFarland HF (1982b) Multiple sclerosis, part 2. N Engl J Med 307:1246–1251PubMedCrossRefGoogle Scholar
  43. Meinl E, Weber F, et al (1993) Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 92: 2633–2643PubMedCrossRefGoogle Scholar
  44. Moen T, Stein R, et al (1984) Distribution of HLA-SB antigens in multiple sclerosis. Tissue Antigens 4: 126–127CrossRefGoogle Scholar
  45. Momburg F, Roelse J, et al (1994) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367: 648–651PubMedCrossRefGoogle Scholar
  46. Naito S, Kuroiwa Y, et al (1978) HLA and Japanese MS. Tissue Antigens 12: 19–24PubMedCrossRefGoogle Scholar
  47. Nepom GT (1990) The HLA genetic contribution to rheumatoid arthritis. Clin Immunol 10: 127–131Google Scholar
  48. Nepom GT (1993) MHC and autoimmune diseases. In: Bach J-F (ed) Monoclonal antibodies and peptide therapy in autoimmune diseases. Marcel Dekker, New York, pp 143–164Google Scholar
  49. Nepom GG, Erlich H (1991) MHC class-II molecules and autoimmunity. Annu Rev Immunol 9: 493–526PubMedCrossRefGoogle Scholar
  50. Odum N, Hyldig-Nielsen JJ, et al (1988) HLA-DP antigens are involved in the susceptibility to multiple sclerosis. Tissue Antigens 31: 235–237PubMedCrossRefGoogle Scholar
  51. Offner H, Hashim GA, et al (1991) T cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 251: 430–432PubMedCrossRefGoogle Scholar
  52. Oksenberg JR, Sherritt M, et al (1989) T-Cell receptor Vα and Cβ, alleles associated with multiple sclerosis and myasthenia gravis. Proc Natl Acad Sci USA 86: 988–992PubMedCrossRefGoogle Scholar
  53. Oksenberg JR, Panzara MA, et al (1993) Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362: 68–70PubMedCrossRefGoogle Scholar
  54. Olerup O, Hillert J, et al (1989) Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc Natl Acad Sci USA 86: 7113–7117PubMedCrossRefGoogle Scholar
  55. Olsson T, Wei Zhi W, et al (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-γ. J Clin Invest 86: 981–985PubMedCrossRefGoogle Scholar
  56. Olsson T, Sun J, et al (1992) Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis. Eur J Immunol 22: 1083–1087PubMedCrossRefGoogle Scholar
  57. Ota K, Matsui M, et al (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346: 183–187PubMedCrossRefGoogle Scholar
  58. Palffy G (1982) MS in Hungary, including Gypsy population. In: Kuroiwa Y, Kurland LT (eds) Multiple sclerosis east and west. Karger, Basel, pp 149–157Google Scholar
  59. Paty DW, Li DKB, et al (1993) Interferon beta-1 b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 662–667PubMedGoogle Scholar
  60. Pette M, Fujita K, et al (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40: 1770–1776PubMedGoogle Scholar
  61. Pette M, Fujita K, et al (1990) Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci USA 87: 7968–7972PubMedCrossRefGoogle Scholar
  62. Powis SJ, Deverson EV, et al (1992) Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature 357: 211–215PubMedCrossRefGoogle Scholar
  63. Prineas JW (1985) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW, Klawans HL, Koetsier JC (eds) Handbook of clinical neurology. Demyelinating diseases 3 (47). Elsevier, Amsterdam New York, pp 213–257Google Scholar
  64. Raine CS (1983) Multiple sclerosis and chronic relapsing EAE: comparative ultrastructural neuropathology. In: Hallpike JF, Adams CW, Tourtellotte WW (eds) Multiple sclerosis. Williams and Wilkins, Baltimore, pp 413–478Google Scholar
  65. Richert JR, Reuben-Burnside CA, et al (1988) Peptide specificities of myelin basic protein-reactive human T-cell clones. Neurology 38: 739–742PubMedGoogle Scholar
  66. Sadovnick AD, Baird PA, et al (1988) Multiple sclerosis: updated risks for relatives. Am J Med Genet 29: 533–541PubMedCrossRefGoogle Scholar
  67. Sadovnick AD, Bulman D, et al (1991) Parent-child concordance in multiple sclerosis. Ann Neurol 29: 252–255PubMedCrossRefGoogle Scholar
  68. Sadovnick AD, Armstrong H, et al (1993) A population-based study of multiple sclerosis in twins: update. Ann Neurol 33: 281–285PubMedCrossRefGoogle Scholar
  69. Seboun E, Robinson MA, et al (1989) A susceptibility locus for multiple sclerosis is linked to T cell receptor β chain complex. Cell 57: 1095–1100PubMedCrossRefGoogle Scholar
  70. Seyfried CE, Mickelson E, et al (1988) A specific nucleotide sequence defines a functional T cell recognition epitope shared by diverse HLA-DR specificities. Hum Immunol 21: 289–299PubMedCrossRefGoogle Scholar
  71. Sollid LM, Markussen G, et al (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J Exp Med 169: 345–350PubMedCrossRefGoogle Scholar
  72. Spurkland A, Ronningen KS, et al (1991) HLA-DQA1 and HLA-DQB1 genes may jointly determine susceptibility to develop multiple sclerosis. Hum Immunol 30: 69–75PubMedCrossRefGoogle Scholar
  73. Thomson G, Robinson WP, et al (1988) Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet 43: 799–816PubMedGoogle Scholar
  74. Tiwari JL, Terasaki PI (1985) HLA and disease associations. Springer, Berlin Heidelberg New York Tokyo, pp 152–167Google Scholar
  75. Utz U, Biddison WE, et al (1993) Skewed T cell receptor repertoire in genetically identical twins with multiple sclerosis correlates with disease. Nature 364: 243–247PubMedCrossRefGoogle Scholar
  76. Vandenbark AA, Hashim GA, et al (1989) Determinants of human myelin basic protein that induce encephalitogenic T cells in Lewis rats. J Immunol 143: 3512–3516PubMedGoogle Scholar
  77. Vandevyer C, Stinissen P, et al (1994) TAP 1 and TAP 2 transporter gene polymorphisms in multiple sclerosis: no evidence for disease association with TAP. J Neuroimmunol 54: 35–40CrossRefGoogle Scholar
  78. Vartdal F, Sollid LM, et al (1989) Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic aminoacid sequences. Hum Immunol 25: 103–110PubMedCrossRefGoogle Scholar
  79. Vogt AB, Kropshofer H, et al (1994) Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol 153: 1665–1673PubMedGoogle Scholar
  80. Voskuhl RR, Martin R, et al (1993) T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15: 137–143PubMedCrossRefGoogle Scholar
  81. Voskuhl RR, Martin R, et al (1993) A functional basis for the association of HLA class II genes and susceptibility to multiple sclerosis: cellular immune responses to myelin basic protein in a multiplex family. J Neuroimmunol 42: 199–208PubMedCrossRefGoogle Scholar
  82. Waksman BH, Reynolds WE (1984) Minireview: multiple sclerosis as a disease of immune regulation. Proc Soc Exp Biol Med 175: 282–294PubMedGoogle Scholar
  83. Walter MW, Gibson WT, et al (1991) Susceptibility to multiple sclerosis is associated with the proximal immunoglobulin heavy chain variable region. J Clin Invest 87:1266–1273PubMedCrossRefGoogle Scholar
  84. Wekerle H, Linington C, et al (1986) Cellular immune reactivity within the CNS. Trends Neuro Sci 9: 271–277CrossRefGoogle Scholar
  85. Wucherpfennig KW, Ota K, et al (1990) Shared human T cell receptor V beta usage to immunodominant regions of myelin basic protein. Science 248: 1016–1019PubMedCrossRefGoogle Scholar
  86. Wucherpfennig KW, Sette A, et al (1994) Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 179: 279–290PubMedCrossRefGoogle Scholar
  87. Zhang J, Medaer R, et al (1993) MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261: 1451–1454PubMedCrossRefGoogle Scholar
  88. Zhang J, Markovic-Plese S, et al (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179: 973–984PubMedCrossRefGoogle Scholar
  89. Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248: 701–702PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1997

Authors and Affiliations

  • R. Martin
    • 1
    • 2
  1. 1.Department of NeurologyUniversity of Tübingen Medical SchoolTübingenFederal Republic of Germany
  2. 2.Neuroimmunology Branch, NINDSNational Institutes of HealthBethesdaUSA

Personalised recommendations