Neuronal vulnerability in Parkinson’s disease

  • Etienne C. Hirsch
  • B. Faucheux
  • P. Damier
  • A. Mouatt-Prigent
  • Y. Agid
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 50)


Although Parkinson’s disease is characterized by a loss of dopaminergic neurons in the substantia nigra not all dopaminergic neurons degenerate in this disease. This suggests that some specific factors make subpopulations of dopaminergic neurons more susceptible to the disease. Here, we show that the most vulnerable neurons are particularly sensitive to oxidative stress and rise in intracellular calcium concentrations. Because both events seem to occur in Parkinson’s disease this may explain why some dopaminergic neurons degenerate and other do not.


Substantia Nigra Dopaminergic Neuron Nerve Cell Death Progressive Supranuclear Palsy Neuronal Vulnerability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psych 18: 951–969Google Scholar
  2. Ceballos I, Lafon M, Javoy-Agid F, Hirsch E, Nicole A, Sinet PM, Agid Y (1990) Superoxide dismutase and Parkinson’s disease. Lancet 335 i: 1035–1036CrossRefGoogle Scholar
  3. Damier P, Hirsch E, Javoy-Agid F, Zhang P, Agid Y (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6PubMedCrossRefGoogle Scholar
  4. Damier P, Hirsch EC, Agid Y, Graybiel AM (1995) Pattern of cell loss in the substantia nigra in Parkinson’s disease. Soc Neurosci Abstr 21: 1250Google Scholar
  5. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389PubMedCrossRefGoogle Scholar
  6. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52: 1830–1836PubMedCrossRefGoogle Scholar
  7. Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55: 16–20PubMedCrossRefGoogle Scholar
  8. Earle KM (1968) Studies in Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed tissue. J Neuropathol Exp Neurol 27: 1–14PubMedCrossRefGoogle Scholar
  9. Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32: 796–798CrossRefGoogle Scholar
  10. Faucheux BA, Hirsch EC, Villares J, Selimi F, Mouatt-Prigent A, Javoy-Agid F, Agid Y (1993) Distribution of 125I-ferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson’s disease. J Neurochem 60: 2238–2241CrossRefGoogle Scholar
  11. Faucheux BA, Herrero MT, Villares J, Levy R, Javoy-Agid F, Obeso JA, Hauw JJ, Agid Y, Hirsch EC (1995) Autoradiographic localization and density of [125I]ferrotrans-ferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 691: 115–124PubMedCrossRefGoogle Scholar
  12. Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 92: 9303–9307CrossRefGoogle Scholar
  13. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301PubMedCrossRefGoogle Scholar
  14. Hassler R (1937) Zur Normalanatomie der Substantia Nigra, Versuch einer architektonischen Gliederung. J Psychol Neurol 48: 1–55Google Scholar
  15. Hassler R (1938) Zur Pathologies der Paralysis Agitans und des post enzephalitischen Parkinsonismus. J Psychol Neurol 48: 387–476Google Scholar
  16. Hirsch EC, Graybiel AM, Agid Y (1988) Melanized dopaminergic neurons are differentially affected in Parkinson’s disease. Nature 334: 345–348PubMedCrossRefGoogle Scholar
  17. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an x-ray microanalysis. J Neurochem 56: 446–451PubMedCrossRefGoogle Scholar
  18. Hirsch EC, Mouatt A, Thomasset M, Javoy-Agid F, Agid Y, Graybiel AM (1992) Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups of the human midbrain: normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93Google Scholar
  19. Ito H, Goto S, Sakamoto S, Hirano A (1992) Calbindin-D28K in the basal ganglia of patients with Parkinsonism. Ann Neurol 32: 543–550PubMedCrossRefGoogle Scholar
  20. Iwamoto N, Thangnipon W, Crawford C, Emson PC (1991) Localization of calpain immunoreactivity in senile plaques and in neurones undergoing neurofibrillary degeneration in Alzheimer’s disease. Brain Res 561: 177–180PubMedCrossRefGoogle Scholar
  21. Jellinger K, Paulus W, Grundke-Iqbal I (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm 2: 327–340CrossRefGoogle Scholar
  22. Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171PubMedCrossRefGoogle Scholar
  23. Lee KS, Frank S, Vanderklish P, Arai A, Lynch G (1991) Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88: 7233–7237PubMedCrossRefGoogle Scholar
  24. Leveugle B, Faucheux BA, Bouras C, Nillesse N, Spik G, Hirsch EC, Agid Y, Hof PR (1996) Immunohistochemical analysis of the iron binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 91: 566–572PubMedCrossRefGoogle Scholar
  25. Manaye KF, Sonsalla PK, Brooks BA, German DC (1991) Calbindin-28k is located in the midbrain dopaminergic neurons which are resistant to MPTP-induced degeneration. Soc Neurosci Abstr 17: 1275Google Scholar
  26. Mouatt-Prigent A, Agid Y, Hirsch EC (1994) Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res 668: 62–70PubMedCrossRefGoogle Scholar
  27. Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased m-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in cell death? Neuroscience 73: 979–987PubMedCrossRefGoogle Scholar
  28. Nilsson E, Alafuzoff I, Blennow K, Blomgren K, Hall C M, Janson I, Karlsson I, Wallin A, Gottfries CG, Karlsson JO (1990) Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol Aging 11: 425–431PubMedCrossRefGoogle Scholar
  29. Nixon RA, Quackenbush R, Vitto A (1986) Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP. J Neurosci 6:1252–1263PubMedGoogle Scholar
  30. Ostwald K, Hagberg H, Andine P, Karlsson JO (1993) Up-regulation of calpain activity in neonatal rat brain after hypoxic-ischemia. Brain Res 630: 289–294PubMedCrossRefGoogle Scholar
  31. Rami A, Krieglstein J (1993) Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res 609: 67–70PubMedCrossRefGoogle Scholar
  32. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520PubMedCrossRefGoogle Scholar
  33. Siman R, Gall C, Perlmuter LS, Christian C, Baudry M, Lynch G (1985) Distribution of calpain I, an enzyme associated with degenerative activity, in rat brain. Brain Res 347: 399–403PubMedCrossRefGoogle Scholar
  34. Yamada T, McGeer PL, Baimbridge KG, McGeer P (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin D28k. Brain Res 26: 303–307CrossRefGoogle Scholar
  35. Yoshida KI, Sorimachi Y, Fujiwara M, Hironaka K (1995) Calpain is implicated in rat myocardial injury after ischemia or reperfusion. Jpn Circ J 59: 40–48PubMedCrossRefGoogle Scholar
  36. Zhang P, Anglade P, Hirsch EC, Javoy-Agid F, Agid Y (1994) Distribution of manganese dependent superoxide dismutase in the human brain. Neuroscience 61: 317–330PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • Etienne C. Hirsch
    • 1
  • B. Faucheux
    • 1
  • P. Damier
    • 1
  • A. Mouatt-Prigent
    • 1
  • Y. Agid
    • 1
  1. 1.INSERM U289Hôpital de la SalpêtrièreParisFrance

Personalised recommendations