Cell death in prion disease

  • H. A. Ketzschmar
  • A. Giese
  • D. R. Brown
  • J. Herms
  • B. Keller
  • B. Schmidt
  • M. Groschup
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 50)


Prion diseases are neurodegenerative transmissible diseases. The infectious agent, termed prion, is thought to consist of an altered host-encoded protein. The pathogenesis of these diseases which typically in a very short time lead to rampant nerve cell death and astrocytic gliosis is poorly understood. Investigations using the in situ endlabeling technique and electron microscopy in a scrapie model in the mouse (79A strain) show that nerve cell death is due to apoptosis. A cell culture model using a synthetic peptide of the prion protein (PrP106–126) shows that this peptide is toxic only to normal neurons whereas nerve cells derived from PrP knock-out (PrP0/0) mice are unaffected by this neurotoxic effect. In addition, microglia play a crucial part in this process by secreting reactive oxygen species. Experiments in animals will have to show whether these cell culture findings adequately reflect the in vivo pathogenesis.


Purkinje Cell Xanthine Oxidase Prion Protein Prion Disease Bovine Spongiform Encephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbour B, Keller BU, Llano I, Marty A (1994) Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12: 1331–1343PubMedCrossRefGoogle Scholar
  2. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620–1624PubMedCrossRefGoogle Scholar
  3. Betz Corradin S, Mauel J, Donini SD, Quattrocchi E, Ricciardi-Castagnoli P (1993) Inducible nitric oxide synthase activity of cloned murine micro glial cells. Glia 7: 255–262CrossRefGoogle Scholar
  4. Borchelt DR, Rogers M, Stahl N, Telling G, Prusiner SB (1993) Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipid anchor. Glycobiology 3: 319–330PubMedCrossRefGoogle Scholar
  5. Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuro Report 5: 2057–2060Google Scholar
  6. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature 380: 345–347PubMedCrossRefGoogle Scholar
  7. Bruce ME, Dickinson AG, Fraser H (1976) Cerebral amyloidosis in scrapie in the mouse: effect of agent strain and mouse genotype. Neuropathol Appl Neurobiol 2: 471–478CrossRefGoogle Scholar
  8. Bruce ME, McConnell I, Fraser H, Dickinson AG (1991) The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J Gen Virol 72: 595–603PubMedCrossRefGoogle Scholar
  9. Bruce ME (1993) Scrapie strain variation and mutation. Br Med Bull 49: 822–838PubMedGoogle Scholar
  10. Bruce ME, McBride PA, Jeffrey M, Scott JR (1994) PrP in pathology and pathogenesis in scrapie-infected mice. Mol Neurobiol 8: 105–112PubMedCrossRefGoogle Scholar
  11. Buja LM, Eigenbrodt ML, Eigenbrodt EH (1993) Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 117: 1208–1214PubMedGoogle Scholar
  12. Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R (1990) Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11: 847–853PubMedCrossRefGoogle Scholar
  13. Buyukmihci NC, Goehring-Harmon F, Marsh RF (1987a) Photoreceptor degeneration during infection with various strains of the scrapie agent in hamsters. Exp Neurol 97: 201–206PubMedCrossRefGoogle Scholar
  14. Buyukmihci NC, Goehring-Harmon F, Marsh RF (1987b) Photoreceptor degeneration in experimental transmissible mink encephalopathy of hamsters. Exp Neurol 96: 727–731PubMedCrossRefGoogle Scholar
  15. Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp H-P, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356: 577–582PubMedCrossRefGoogle Scholar
  16. Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B (1989) Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol 63: 175–181PubMedGoogle Scholar
  17. Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370: 295–297PubMedCrossRefGoogle Scholar
  18. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch-clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 414: 600–612PubMedCrossRefGoogle Scholar
  19. Edwards FA, Konnerth A, Sakmann B (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J Physiol 430: 213–249PubMedGoogle Scholar
  20. Eikelenboom P, Rozemuller JM, Kraal G, Stam FC, McBride PA, Bruce ME, Fraser H (1991) Cerebral amyloid plaques in Alzheimer’s disease but not in scrapie-affected mice are closely associated with a local inflammatory process. Virchows Arch [B] 60: 329–336CrossRefGoogle Scholar
  21. Fairbairn DW, Carnahan KG, Thwaits RN, Grigsby RV, Holyoak GR, Oneill KL (1994) Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain. FEMS Microbiol Lett 115: 341–346PubMedCrossRefGoogle Scholar
  22. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362: 543–546PubMedCrossRefGoogle Scholar
  23. Frackowiak J, Wisniewski HM, Wegiel J, Merz GS, Iqbal K, Wang KC (1992) Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce ß-amyloid fibrils. Acta Neuropathol (Berl) 84: 225–233PubMedCrossRefGoogle Scholar
  24. Franke C, Hatt H, Dudel J (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett 77: 199–204PubMedCrossRefGoogle Scholar
  25. Fraser H (1993) Diversity in the neuropathology of scrapie-like diseases in animals. Br Med Bull 49: 792–809PubMedGoogle Scholar
  26. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501PubMedCrossRefGoogle Scholar
  27. Giese A, Groschup MH, Hess B, Kretzschmar HA (1995) Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5: 213–221PubMedCrossRefGoogle Scholar
  28. Giulian D, Young DG, Woodward J, Brown DC, Lachman LB (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8: 709–714PubMedGoogle Scholar
  29. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6: 2163–2178PubMedGoogle Scholar
  30. Gold R, Schmied M, Rothe G, Zischler H, Breitschopf H, Wekerle H, Lassmann H (1993) Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem 41: 1023–1030PubMedCrossRefGoogle Scholar
  31. Hamill O, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100PubMedCrossRefGoogle Scholar
  32. Herms JW, Kretzschmar HA, Titz S, Keller BU (1995) Patch-clamp analysis of synaptic transmission to cerebellar Purkinje cells of prion protein knockout mice. Eur J Neurosci 7: 2508–2512PubMedCrossRefGoogle Scholar
  33. Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol 422: 203–225PubMedGoogle Scholar
  34. Hogan RN, Baringer JR, Prusiner SB (1981) Progressive retinal degeneration in scrapie-infected hamsters: a light and electron microscopical analysis. Lab Invest 44: 34–42PubMedGoogle Scholar
  35. Hogan RN, Kingsbury DT, Baringer JR, Prusiner SB (1983) Retinal degeneration in experimental Creutzfeldt-Jakob disease. Lab Invest 49: 708–715PubMedGoogle Scholar
  36. Huntley CW, Vickers JC, Morrison JH (1994) Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease. TINS 17: 536PubMedGoogle Scholar
  37. Jakob A (1921) Über eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswertem anatomischem Befunde (spastische Pseudosklerose-Encephalo-myelopathie mit disseminierten Degenerationsherden). Dtsch Z Nervenheilkd 70: 132–146Google Scholar
  38. Jakob A (1923) Spastische Pseudosklerose. In: Jakob A (ed) Die extrapyramidalen Erkrankungen. Springer, Berlin, pp 215–245Google Scholar
  39. Jeffrey M, Halliday WG, Goodsir CM (1992) A morphometric and immunohistochemical study of the vestibular nuclear complex in bovine spongiform encephalopathy. Acta Neuropathol (Berl) 84: 651–657PubMedGoogle Scholar
  40. Jeffrey M, Fraser JR, Halliday WG, Fowler N, Goodsir CM, Brown DA (1995) Early unsuspected neuron and axon terminal loss in scrapie-infected mice revealed by morphometry and immunocytochemistry. Neuropathol Appl Neurobiol 21: 41–49PubMedCrossRefGoogle Scholar
  41. Keller BU, Konnerth A, Yaari Y (1991) Patch clamp analysis of excitatory synaptic currents in granule cells of rat hippocampus. J Physiol 435: 275–293PubMedGoogle Scholar
  42. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  43. Kozlowski PB, Moretz RC, Carp RI, Wisniewski HM (1982) Retinal damage in scrapie mice. Acta Neuropathol (Berl) 56: 9–12PubMedCrossRefGoogle Scholar
  44. Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122: 1–5PubMedGoogle Scholar
  45. Lambolez B, Audinat E, Bochet P, Crepel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9: 247–258PubMedCrossRefGoogle Scholar
  46. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol (Berl) 89: 35–41PubMedCrossRefGoogle Scholar
  47. Laurie DJ, Seeburg PH, Wisden W (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12: 1063–1076PubMedGoogle Scholar
  48. Lieberburg I (1987) Developmental expression and regional distribution of the scrapieassociated protein mRNA in the rat central nervous system. Brain Res 417: 363–366PubMedCrossRefGoogle Scholar
  49. Llano I, Marty A, Armstrong CM, Konnerth A (1991) Synaptic and agonist-induced currents of Purkinje cells in rat cerebellar slices. J Physiol 434: 183–213PubMedGoogle Scholar
  50. Manson J, West JD, Thomson V, McBride P, Kaufman MH, Hope J (1992) The prion protein gene: a role in mouse embryogenesis? Development 115: 117–122PubMedGoogle Scholar
  51. Masters CL, Richardson EP Jr (1978) Subacute spongiform encephalopathy (Creutzfeldt-Jakob disease). The nature and progression of spongiform change. Brain 101: 333–344PubMedCrossRefGoogle Scholar
  52. McBride PA, Bruce ME, Fraser H (1988) Immunostaining of scrapie cerebral amyloid plaques with antisera raised to scrapie-associated fibrils (SAF). Neuropathol Appl Neurobiol 14: 325–336PubMedCrossRefGoogle Scholar
  53. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by ß-amyloid protein and interferon-gamma. Nature 374: 647–650PubMedCrossRefGoogle Scholar
  54. Migheli A, Cavalla P, Marino S, Schiffer D (1994) A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks. J Neuropathol Exp Neurol 53: 606–616PubMedCrossRefGoogle Scholar
  55. Moser M, Colello RJ, Pott U, Oesch B (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14: 509–517PubMedCrossRefGoogle Scholar
  56. Müller WEG, Ushijima H, Schroder HC, Forrest JMS, Schatton WFH, Rytik PG, Heffnerlauc M (1993) Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol 246: 261–267PubMedCrossRefGoogle Scholar
  57. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603PubMedCrossRefGoogle Scholar
  58. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Meth Enzymol 207: 123–131PubMedCrossRefGoogle Scholar
  59. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144PubMedCrossRefGoogle Scholar
  60. Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515–1522PubMedCrossRefGoogle Scholar
  61. Prusiner SB (1993) Genetic and infectious prion diseases. Arch Neurol 50: 1129–1153PubMedCrossRefGoogle Scholar
  62. Scott JR, Fraser H (1984) Degenerative hippocampal pathology in mice infected with scrapie. Acta Neuropathol (Berl) 65: 62–68PubMedCrossRefGoogle Scholar
  63. Searle J, Kerr JFR, Bishop CJ (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Path Ann 17: 229–259Google Scholar
  64. Sloviter RS, Dean E, Neubort S (1993) Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J Comp Neurol 330: 337–351PubMedCrossRefGoogle Scholar
  65. Spielmeyer W (1922) Die histopathologische Forschung in der Psychiatrie. Klin Wochenschr 1: 1817–1819CrossRefGoogle Scholar
  66. Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5: 2529–2533PubMedCrossRefGoogle Scholar
  67. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462PubMedCrossRefGoogle Scholar
  68. Vincent P, Armstrong CM, Marty A (1992) Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. J Physiol 456: 453–471PubMedGoogle Scholar
  69. Whittington MA, Sidle KCL, Gowland I, Meads J, Hill AF, Palmer MS, Jefferys JGR, Collinge J (1995) Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat Genet 9: 197–207PubMedCrossRefGoogle Scholar
  70. Williams AE, Lawson LJ, Perry VH, Fraser H (1994) Characterization of the microglial response in murine scrapie. Neuropathol Appl Neurobiol 20: 47–55PubMedCrossRefGoogle Scholar
  71. Wisden W, Seeburg PH (1992) GABAA receptor channels: from subunits to functional entities. Curr Opin Neurobiol 2: 263–269PubMedCrossRefGoogle Scholar
  72. Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142: 67–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • H. A. Ketzschmar
    • 1
  • A. Giese
    • 1
  • D. R. Brown
    • 1
  • J. Herms
    • 1
  • B. Keller
    • 2
  • B. Schmidt
    • 3
  • M. Groschup
    • 4
  1. 1.Institute of NeuropathologyUniversity of GöttingenGöttingenGermany
  2. 2.Abteilung Neuro- und Sinnesphysiologie, Zentrum Physiologie und PathophysiologieUniversität GöttingenGöttingenGermany
  3. 3.Abteilung Biochemie II, Zentrum Biochemie und Molekulare ZellbiologieUniversität GöttingenGöttingenGermany
  4. 4.Bundesanstalt für Viruskrankheiten der TiereTübingenGermany

Personalised recommendations