Advertisement

Pathogenesis of immune-mediated demyelination in the CNS

  • H.-P. Hartung
  • P. Rieckmann
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 50)

Summary

Collective evidence from studies in the animal model experimental autoimmune encephalomyelitis and pathological and immunological studies on MS patients suggest that this most common inflammatory demyelinating disorder of the central nervous system results from primarily T-lymphocyte driven aberrant immune responses to a number of myelin and possibly non-myelin antigens. These include MBP, PLP, MOG, MAG, CNP and S 100. Autoreactive T-cells reactive with these antigens circulate in blood and upon activation can travel across the blood-brain-barrier to initiate a local immunoflammatory response provided they encounter a microglial cell that displays antigenic epitopes in the context of MHC class II gene products and accessory molecules. Demyelination probably results from antibody-induced complement activation. Repeated inflammatory episodes eventually exhaust the reparative capacities of oligodendrocytes and damage axons. As the disease evolves, an initialy focussed immune response may diversify due to a process termed epitope spreading. The initial event of T lymphocyte activation remains elusive, but molecular mimicry, cross-recognition of structures shared between microbes and myelin, appears to be crucial.

Keywords

Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Experimental Allergic Encephalomyelitis Multiple Sclerosis Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegretta M, Nicklas JA, Sriram S, Albertini RJ (1990) T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 247: 718–721PubMedCrossRefGoogle Scholar
  2. Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 92: 12041–12045PubMedCrossRefGoogle Scholar
  3. Battistini L, Selmaj K, Kowal C, Ohmen J, Modlin RL, Raine CS, Brosnan CF (1995) Multiple sclerosis: limited diversity of the V2–J3 T cell receptor in chronic active lesions. Ann Neurol 37: 198–203PubMedCrossRefGoogle Scholar
  4. Bauer J, Wekerle H, Lassmann H (1995) Apoptosis in brain-specific autoimmune disease. Current Opinion in Immunology 7: 839–843PubMedCrossRefGoogle Scholar
  5. Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon-gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis. Acta Neurol Scand 78: 318–323PubMedCrossRefGoogle Scholar
  6. Birnbaum G (1995) Stress proteins: their role in the normal central nervous system and in disease states, especially multiple sclerosis. Springer Seminars in Immunopathology 17: 107–118PubMedCrossRefGoogle Scholar
  7. Bö L, Dawson TM, Wesselingh S, Mörk S, Choi S, Kong PA, Hanley D, Trapp BD (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36: 778–786PubMedCrossRefGoogle Scholar
  8. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272: 60–66PubMedCrossRefGoogle Scholar
  9. Chia LS, Thompson JE, Moscarello MA (1983) Disorder in human myelin induced by superoxide radical: an in vitro investigation. Biochem Biophys Res Commun 117:141–146PubMedCrossRefGoogle Scholar
  10. Chofflon M, Juillard C, Juillard P, Gauthier G, Grau GE (1992) Tumor necrosis factor alpha production as a possible predictor of relapse in patients with multiple sclerosis. Eur Cytokine Netw 3: 523–531PubMedGoogle Scholar
  11. Compston DA, Morgan BP, Campbell AK, Wilkins P, Cole G, Thomas ND, Jasani B (1989) Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol Appl Neurobiol 15: 307–316PubMedCrossRefGoogle Scholar
  12. Compston DA, Scolding N, Noble M (1991) Pathogenesis of demyelinating diseases: Insights form cell biology. Trends Neurosci 14: 175–182PubMedCrossRefGoogle Scholar
  13. Cross AH, Misko TP, Lin RF, Hickey WF, Trotter JL, Tilton RG (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93: 2684–2690PubMedCrossRefGoogle Scholar
  14. Cross AH, Girard TJ, Giacoletto KS, Evans RJ, Keeling RM, Lin RF, Trotter JL, Karr RW (1995) Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation [see comments]. J Clin Invest 95: 2783–2789PubMedCrossRefGoogle Scholar
  15. De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F (1995) The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol 54: 175–187PubMedCrossRefGoogle Scholar
  16. Freedman MS, Ruijs TC, Selin LK, Antel JP (1991) Peripheral blood gamma-delta T cells lyse fresh human brain-derived oligodendrocytes [see comments]. Ann Neurol 30:794–800PubMedCrossRefGoogle Scholar
  17. Gijbels K, Masure S, Carton H, Opdenakker G (1992) Gelatenase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol 41: 29–34PubMedCrossRefGoogle Scholar
  18. Gijbels K, Galardy RE, Steinman L (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 94: 2177–2182PubMedCrossRefGoogle Scholar
  19. Hartung HP, Archelos JJ, Zielasek J, Gold R, Koltzenburg M, Reiners K-H, Toyka KV (1995) Circulating adhesion molecules and inflammatory mediators in demyelination: A review. Neurology 45: 22–32CrossRefGoogle Scholar
  20. Hartung HP, Jung S, Stoll G, Zielasek J, Schmidt B, Archelos JJ, Toyka KV (1992) Inflammatory mediators in demyelinating disorders of the CNS and PNS. J Neuro-immunol 40: 197–210Google Scholar
  21. Hartung HP, Michels M, Reiners K, Seeldrayers P, Archelos JJ, Toyka KV (1993) Soluble ICAM-1 serum levels in multiple sclerosis and viral encephalitis. Neurology 43: 2331–2335PubMedCrossRefGoogle Scholar
  22. Hartung HP, Reiners K, Archelos JJ, Michels M, Seeldrayers P, Heidenreich F, Pflughaupt KW, Toyka KV (1995b) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol 38: 186–193PubMedCrossRefGoogle Scholar
  23. Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulation in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40: 1735–1739PubMedCrossRefGoogle Scholar
  24. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170: 607–612PubMedCrossRefGoogle Scholar
  25. Hohlfeld R, Meinl E, Weber F, Zipp F, Schmidt S, Sotgiu S, Goebels N, Voltz R, Spuler S, Iglesias A, et al (1995) The role of autoimmune T lymphocytes in the pathogenesis of multiple sclerosis. Neurology 45: 33–38CrossRefGoogle Scholar
  26. Konat GW, Offner H (1983) Density distribution of myelin fragments isolated from control and multiple sclerosis brain. Neurochem Int 4: 241–246CrossRefGoogle Scholar
  27. Konat GW, Wiggins RC (1985) Effect of reactive oxygen species on myelin membrane proteins. J Neurochem 45: 1113–1118PubMedCrossRefGoogle Scholar
  28. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Gilmcher LH (1995) B7–1 and B7–2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80: 707–718PubMedCrossRefGoogle Scholar
  29. Kuroda Y, Shimamoto Y (1991) Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats. J Neuroimmunol 34: 159–164PubMedCrossRefGoogle Scholar
  30. Lehmann PV, Sercarz EE, Forsthuber T, Dayan CM, Gammon G (1993) Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunology Today 14: 203–208PubMedCrossRefGoogle Scholar
  31. Link J, Söderström M, Olsson T, Bo H, Ljungdahl A, Link H (1994) Increased transforming growth factor-ß, interleukin-4, and interferon-τ in multiple sclerosis. Ann Neurol 36: 379–386PubMedCrossRefGoogle Scholar
  32. Markovic Plese S, Fukaura H, Zhang J, Al Sabbagh A, Southwood S, Sette A, Kuchroo VK, Hafler DA (1995) T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 155: 982–992Google Scholar
  33. Martino G, Moiola L, Brambilla E, Clementi E, Comi G, Grimaldi LME (1995) Interferon-gamma induces T lymphocyte proliferation in multiple sclerosis via a Ca2+-dependent mechanism. J Neuroimmunol 62: 169–176PubMedCrossRefGoogle Scholar
  34. Matsuda M, Tsukada N, Miyagi K, Yanagisawa N (1994) Increased levels of soluble tumor necrosis factor receptor in patients with multiple sclerosis and HTLV-1-associated myelopathy. J Neuroimmunol 52: 33–40PubMedCrossRefGoogle Scholar
  35. Miller SD, McRae BL, Vanderlugt CL, Nikcevich KM, Pope JG, Pope L, Karpus WJ (1995) Evolution of the T-cell repertoire during the course of experimental immune-mediated demyelinating diseases. Immunol Rev 144: 225–244PubMedCrossRefGoogle Scholar
  36. Olsson T (1995) Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 144: 245–268PubMedCrossRefGoogle Scholar
  37. Olsson T, Wang W-Z, Höjeberg B, Kostulas V, Jiang Y-P, Anderson G, Ekre H-P, Link H (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-γ. J Clin Invest 86: 981–985PubMedCrossRefGoogle Scholar
  38. Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of multiple sclerosis with gamma interferon: exacerbation associated with activation of the immune system. Neurology 37: 1097–1102PubMedCrossRefGoogle Scholar
  39. Pender MP, McCombe PA, Yoong G, Nguyen KB (1992) Apoptosis of alpha beta T lymphocytes in the nervous system in experimental autoimmune encephalomyelitis: its possible implications for recovery and acquired tolerance. J Autoimmun 5: 401–410PubMedCrossRefGoogle Scholar
  40. Piddlesden SJ, Storch MK, Hibbs M, Freeman AM, Lassmann H, Morgan BP (1994) Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol 152: 5477–5484PubMedGoogle Scholar
  41. Racke MK, Scott DE, Quigley L, Gray GS, Abe R, June CH, Perrin PJ (1995) Distinct roles for B7–1 (CD80) and B7–2 (CD86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest 96: 2195–2203PubMedCrossRefGoogle Scholar
  42. Raine CS (1994) The Dale E, McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 36 [Suppl]: 61–72CrossRefGoogle Scholar
  43. Rieckmann P, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, Liier W, Poser S (1994a) Cytokine mRNA levels in mononuclear blood cells from patients with multiple sclerosis. Neurology 44: 1523–1526PubMedCrossRefGoogle Scholar
  44. Rieckmann P, Martin S, Weichselbraun I, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, Liier W, Helwig A, Poser S (1994b) Serial analysis of circulating adhesion molecules and TNF receptor in serum from patients with multiple sclerosis.: clCAM-1 is an indicator for relapse. Neurology 44: 2367–2372PubMedCrossRefGoogle Scholar
  45. Rieckmann P, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, Liier W, Helwig A, Poser S (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37: 82–88PubMedCrossRefGoogle Scholar
  46. Rosenberg GA, Dencoff JE, Correa N, Reiners M, Ford CC (1996) Effect of steroids on CSF matrix metalloproteinases in multiple scelerosis: relation to blood-brain barrier injury. Neurology 46: 1626–1632PubMedCrossRefGoogle Scholar
  47. Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172: 1193–1200PubMedCrossRefGoogle Scholar
  48. Sanders ME, Koski CL, Robbins D, Shin ML, Frank MM, Joiner KA (1986) Activated terminal complement in cerebrospinal fluid in Guillain-Barre syndrome and multiple sclerosis. J Immunol 136: 4456–4459PubMedGoogle Scholar
  49. Schmied M, Breitschopf H, Gold R, Zischler H, Rothe G, Wekerle H, Lassmann H (1993) Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol 143: 446–452PubMedGoogle Scholar
  50. Selmaj K, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23: 339–346PubMedCrossRefGoogle Scholar
  51. Selmaj K, Brosnan CF, Raine CS (1991a) Colocalization of lymphocytes bearing gamma delta T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci USA 88: 6452–6456PubMedCrossRefGoogle Scholar
  52. Selmaj K, Raine CS, Cannella B, Brosnan CF (1991b) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954PubMedCrossRefGoogle Scholar
  53. Selmaj K, Raine CS, Cross AH (1991c) Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 30: 694–700PubMedCrossRefGoogle Scholar
  54. Sharief MK, Hentges R (1991) Association between tumor necrosis factor-α and disease progression in patients with multiple sclerosis. N Engl J Med 325: 467–472PubMedCrossRefGoogle Scholar
  55. Sharief MK, Noori MA, Ciardi M, et al (1993) Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with active multiple sclerosis: correlation with TNF-α and blood-brain barrier damage. J Neuroimmunol 43: 15–22PubMedCrossRefGoogle Scholar
  56. Sippy BD, Hofman FM, Wallach D, Hinton DR (1995) Increased expression of tumor necrosis factor-alpha receptors in the brains of patients with AIDS. J-Acquir Immune Defic Syndr Hum Retroviral 10: 511–521Google Scholar
  57. Söderström M, Hillert J, Link J, Navikas V, Fredrikson S, Link H (1995) Expression of IFN-gamma, IL-4 and TGF-beta in multiple sclerosis in relation to HLA-Dw2 pheno-type and stage of disease. Multiple Sclerosis 1: 173–180PubMedGoogle Scholar
  58. Steinman L, Waisman A, Altmann D (1995) Major T-cell responses in multiple sclerosis. Mol Med Today 1: 79–83PubMedCrossRefGoogle Scholar
  59. Stinissen P, Vandevyver C, Medaer R, Vandegaer L, Nies J, Tuyls L, Hafler DA, Raus J, Zhang J (1995) Increased frequency of gamma delta T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis. Reactivity, cytotoxicity, and T cell receptor V gene rearrangements. J Immunol 154: 4883–4894PubMedGoogle Scholar
  60. Tchélingérian JL, Monge M, Le Saux F, Zalc B, Jacque C (1995) Differential oligodendroglial expression of the tumor necrosis factor receptors in vivo and in vitro. J Neurochem 65: 2377–2380PubMedCrossRefGoogle Scholar
  61. Theofilopoulos AN (1995) The basis of autoimmunity. Part I. Mechanisms of aberrant self-recognition. Immunol Today 16: 90–98PubMedCrossRefGoogle Scholar
  62. Tracey KJ, Cerami A (1993) Tumor necrosis factor: an updated review of its biology. Crit Care Med 21: 415–422CrossRefGoogle Scholar
  63. Trotter JL, Collins KG, Van der Veen RC (1991) Serum cytokine levels in chronic progressive multiple sclerosis: interleukin-2 levels parallel tumor necrosis factor-alpha levels. J Neuroimmunol 33: 29–36PubMedCrossRefGoogle Scholar
  64. Tsukada N, Miymgi K, Matsuda M, et al (1993) Increased levels of circulating intercellular adhesion molecule-1 in multiple sclerosis and human T-lymphotropic virus type 1-associated myelopathy. Ann Neurol 33: 591–596CrossRefGoogle Scholar
  65. Van Noort JM, Van Sechel AC, Bajramovic JJ, El Ouagmiri M, Polman CH, Lassmann H, Ravid R (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375: 798–801PubMedCrossRefGoogle Scholar
  66. Voskuhl RR, Martin R, Bergman C, Dalai M, Ruddle NH, McFarland HF (1993) T helper (th1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15: 137–143PubMedCrossRefGoogle Scholar
  67. Warren KG, Catz I, Steinman L (1995) Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc Natl Acad Sci USA 92: 11061–11065PubMedCrossRefGoogle Scholar
  68. Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, Hafler DA (1995) Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and inter-leukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182: 1985–1996PubMedCrossRefGoogle Scholar
  69. Wucherpfennig KW, Hafler DA (1995) A review of T-cell receptors in multiple sclerosis: clonal expansion and persistence of human T-cells specific for an immunodominant myelin basic protein peptide. Ann NY Acad Sci 756: 241–258PubMedCrossRefGoogle Scholar
  70. Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80: 695–705PubMedCrossRefGoogle Scholar
  71. Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA (1992) Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci USA 89: 4588–4592PubMedCrossRefGoogle Scholar
  72. Wucherpfennig KW, Zhang J, Witek C, Matsui M, Modabber Y, Ota K, Hafler DA (1994) clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J Immunol 152: 5581–5592PubMedGoogle Scholar
  73. Zielasek J, Jung S, Gold R, Liew FY, Toyka KV, Hartung HP (1995) Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J Neuroimmunol 58: 81–88PubMedCrossRefGoogle Scholar
  74. Zipp F, Weber F, Huber S, Sotgiu S, Czlonkowska A, Holler E, Albert E, Weiss EH, Wekerle H, Hohlfeld R (1995) Genetic control of multiple sclerosis: increased production of lymphotoxin and tumor necrosis factor-alpha by HLA.-DR2+ T cells. Ann Neurol 38: 723–730PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • H.-P. Hartung
    • 1
  • P. Rieckmann
    • 1
  1. 1.Department of NeurologyJulius-Maximilians-UniversitätWürzburgGermany

Personalised recommendations