Skip to main content

Assessment of neurotoxicity and “neuroprotection”

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 50))

Summary

Coronal brain slices allow the study of neurotoxicity and “neuroprotection” under conditions where the differentiation-state and interrelationships of the neurones and glial cells are closer to those occurring in the intact tissue than is the case for co-cultured cell systems. The involvement of glial cells in the excitotoxicity of kainate and the potentiation of this toxicity by inhibition of glutamine synthase can be demonstrated. Longer-term toxicity of kainate may also be compounded by depletion of glutathione levels resulting from inhibition of γ-glutamyleysteine synthase. The involvement of nitric oxide formation in the toxicity of N-methyl-D-aspartate can also be shown. The neurotoxicity of 1-methyl-4-phenylpyridinium can be readily demonstrated in coronal slice preparations. Taurine affords protection against this neurotoxicity. The possible mechanisms of these effects are considered in terms of the cyclic interrelationships between the different events which can lead to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bianchi L, Sharp T, Bolam JP, Delia Corte, L (1994) The effect of kainic acid on the release of GABA in rat neostriatum and substantia nigra. Neuro Report 5: 1233–1236

    CAS  Google Scholar 

  • Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by l-Methy1-4-phenylpyridinium (MPP+); evidence for free radical involvement. J Neurochem 58: 786–789

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Werner P (1994) Free radicals, oxidative stress and neurodegeneration. In: Calne DB (ed) Neurodegenerative disease. Saunders, Philadelphia, pp 139-162

    Google Scholar 

  • Cooper AJL, Vergara F, Duffy TE (1983) Cerebral glutamine synthetase. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamate, glutamine and GABA in the central nervous system. Alan Liss, New York, pp 77–93

    Google Scholar 

  • Drejer J, Larsson OM, Schousboe A (1982) Characterisation of L-glutamate and L-glutamine uptake into, and release from, astrocytes and neurones cultured from different brain regions. Exper Brain Res 47: 259–269

    CAS  Google Scholar 

  • Ferkany JW, Zaczek R, Coyle JT (1982) Kainic acid stimulates excitatory amino acid neurotransmitter release at pre-synaptic receptors. Nature 298: 757–759

    Article  PubMed  CAS  Google Scholar 

  • Frei B, Richter C (1986) N-methyl-4-phenylpyridine (MPP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria. FEBS Lett 198: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the central nervous system. Trends Neurosci 14: 60–67

    Article  PubMed  CAS  Google Scholar 

  • Glinka Y, Tipton KF, Youdim MBH (1996) The nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine. J Neurochem 66: 2004–2010

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa E, Takeshiga K, Oishi T, Murai Y, Minikami S (1990) l-Methyl-4-phenyl-pyridinium (MPP+) induces NADH dependent superoxide formation and enhances NADH-dependant lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170: 1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Yu A, Svenneby G, Kvamme E, Fosmark H, Schousboe A (1980) Absence of a preferential glutamine uptake in neurons — an indication of a net transfer of TCA constituents from nerve endings to astrocytes? Neurosci Lett 16: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the l-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implications for the mechanism of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 62: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Phys Rev 72: 101–159

    CAS  Google Scholar 

  • Izumi Y, Benz AM, Clifford DB, Zorumski CF (1992) Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci Lett 135: 227–230

    Article  PubMed  CAS  Google Scholar 

  • Kiedrowski L, Costa E, Wroblewski JT (1992) In vitro interaction between cerebellar astrocytes and granule cells: a putative role for nitric oxide. Neurosci Lett 135: 59–61

    Article  PubMed  CAS  Google Scholar 

  • Kollegger H, McBean GJ, Tipton KF (1991) The inhibition of glutamine synthetase in rat corpus striatum in vitro by methionine sulfoximine increases the neurotoxic effects of kainate and N-methy-D-aspartate. Neurosci Lett 130: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Kollegger H, McBean GJ, Tipton KF (1992) Striatal NMDA-neurotoxicity is reduced by inhibition of nitric oxide synthase. Neurochem Int 21 [Suppl]: B9

    Article  Google Scholar 

  • Kollegger H, McBean GJ, Tipton KF (1993) Reduction of striatal N-methyl-D-aspartate toxicity by inhibition of nitric oxide synthase. Biochem Pharmacol 45: 260–264

    Article  PubMed  CAS  Google Scholar 

  • Krespan B, Berl S, Nicklas WJ (1982) Alteration in neuronal-glial metabolism of glutamate by the neurotoxin kainic acid. J Neurochem 38: 509–518

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537

    Article  PubMed  CAS  Google Scholar 

  • Lombardini JB (1991) Taurine and retinal function. Brain Res Rev 16: 151–169

    Article  PubMed  CAS  Google Scholar 

  • Lunkarlsen R (1979) The toxic effects of sodium glutamate and DL-α aminoadipic acid on rat retina: changes in high affinity uptake of putative neurotransmitters. J Neurochem 31: 1055–1061

    Article  Google Scholar 

  • McBean GJ (1990) Intrastriatal injection of DL-α aminoadipate reduces kainate toxicity in vitro. Neurosci 34: 225–234

    Article  CAS  Google Scholar 

  • McBean GJ, Horner EB, Couée I, Phillips JP, O’Brien M, Lee TC, Tipton KF (1990) Enzymes and glial cells in brain damage and neurodegenerative diseases. In: Dostert P, Riederer P, Strolin Benedetti M, Roncucci R (eds) Early markers in Parkinson’s and Alzheimer’s disease (New vistas in drug research 1). Springer, Wien New York, pp 209–220

    Chapter  Google Scholar 

  • McBean GJ, Doorty KB, Tipton KF, Kollegger H (1995) Alterations in the glial cell metabolism of glutamate by kainate and N-methyl-D-aspartate. Toxicon 33: 569–576

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharm Sci 11: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Nicklas WJ, Krespan B, Berl S (1980) Effect of kainate on ATP levels and glutamate metabolism in cerebellar slices. Eur J Pharmacol 62: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localisation of glutamine synthetase in astrocytes of rat brain. Brain Res 161: 301–310

    Article  Google Scholar 

  • O’Byrne MB, Tipton KF, McBean GJ (1996) Neurotoxicity of MPP+ as studied in a tissue slice system. Biochem Soc Trans 24: 62S

    Google Scholar 

  • Olney JW (1982) The toxicity of glutamate and related compounds in the retina and the brain. Retina 2: 341–359

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur-containing amino acids on the infant mouse central nervous system. Exper Brain Res 14: 61–76

    CAS  Google Scholar 

  • Park E, Schuller-Levis G, Quinn MR (1995) Taurine chloramine inhibits production of nitric oxide and TNF-α in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events. J Immunol 154: 4778–4784

    PubMed  CAS  Google Scholar 

  • Paulsen RA, Contestabile A, Villani A, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem 48: 1377–1385

    Article  PubMed  CAS  Google Scholar 

  • Pedersen OO, Karlsen RL (1979) Destruction of Muller cells in the adult rat by intravitreal injection of DL-α aminoadipic acid An electron microscopic study. Exper Eye Res 28: 569–575

    Article  CAS  Google Scholar 

  • Pellmar TC, Roney D, Lepinski, DL (1992) Role of glutathione in repair of free radical damage in hippocampus in vitro. Brain Res 583: 194–200

    Article  PubMed  CAS  Google Scholar 

  • Pocock JM, Murphie HM, Nicholls DG (1988) Kainic acid inhibits the synaptosomal plasma membrane glutamate carrier and allows glutamate leakage from the cytoplasm but does not affect glutamate exocytosis. J Neurochem 50: 745–751

    Article  PubMed  CAS  Google Scholar 

  • Sandri G, Panfili, E, Ernster, L (1990) Hydrogen peroxide production by monoamine oxidase in isolated rat brain mitochondria: its effect on glutathione levels and Ca2+ efflux. Biochim Biophys Acta 1035: 300–305

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A (1982) Glial cell marker enzymes. Scand J Immunol 15: 339–356

    Article  Google Scholar 

  • Schurr A, Rigor BM (1987) The mechanism of neuronal resistance and adaptation to hypoxia. FEBS Lett 224: 4–8

    Article  PubMed  CAS  Google Scholar 

  • Sen S, DTncalci M (1992) Apoptosis: biochemical events and relation to cancer chemotherapy. FEBS Lett 307: 122–127

    Article  PubMed  CAS  Google Scholar 

  • Tipton KF (1994) What is it that I-deprenyl selegiline might do? Clin Pharmacol Ther 56: 781–796

    Article  PubMed  CAS  Google Scholar 

  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 6: 1191–1206

    Article  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191: 421–427

    PubMed  CAS  Google Scholar 

  • Usowicz MM, Gallo V, Cull-Candy SG (1989) Multiple conductance channels in type 2 cerebellar astrocytes activated by excitatory amino acids. Nature 339: 380–383

    Article  PubMed  CAS  Google Scholar 

  • Wagner GC, Jarvis MF, Carelli RM (1985) Ascorbic acid reduced dopamine depletion induced by methamphetamine and l-methyl-4-phenylpyridinium ion. Neuropharmacol 24: 1261–1262

    Article  CAS  Google Scholar 

  • Wang S, Lees GJ, Rosengren LE, Carlsson J-E, Stigbrand T, Hamberger A, Haglid KG (1991) The effect of N-methyl-D-aspartate lesion in the hippocampus on glial and neuronal marker proteins. Brain Res 541: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Waniewski RA (1992) Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J Neurochem 58: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Waniewski RA, Martin DL (1986) Exogenous glutamate is metabolised to glutamine and exported by rat primary astrocyte cultures. J Neurochem 47: 304–313

    Article  PubMed  CAS  Google Scholar 

  • Waniewski RA, McFarland D (1990) Intrahippocampal kainic acid reduces glutamine synthetase. Neurosci 34: 305–310

    Article  CAS  Google Scholar 

  • Wellner VP, Meister A (1966) Binding of adenosine triphosphate and adenosine diphosphate by glutamine synthetase. Biochemistry 5: 872–879

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Riederer P (1993) The role of iron in senescence of dopaminergic neurons in Parkinson’s disease. J Neural Transm [Suppl] 40: 57–67

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this paper

Cite this paper

O’Byrne, M., Tipton, K., McBean, G., Kollegger, H. (1997). Assessment of neurotoxicity and “neuroprotection”. In: Riederer, P., Calne, D.B., Horowski, R., Mizuno, Y., Poewe, W., Youdim, M.B.H. (eds) Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 50. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6842-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6842-4_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82898-4

  • Online ISBN: 978-3-7091-6842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics