Skip to main content

Mechanisms of cell death in Alzheimer’s disease

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 50))

Summary

The etiology of Alzheimer’s disease (AD) as well as its exact pathogenesis are unknown. Eventhough the deposition of βA4 and the formation of neurofibrillary tangles represent impressive morphological hallmarks of the disease, several lines of evidence suggest that both lesions are not sufficient as causes of the neurodegenerative process. On the other hand, in vitro studies have shown that βA4 is neurotoxic and is able to induce apoptotic cell death in neuronal cell cultures. Cells dying by apoptosis (programmed cell death) can be visualized in the tissue with a molecular biologic technique detecting fragmented nuclear DNA. Using this method, we have detected 50 × more neurons and 25 × more glial cells with nuclear DNA fragmentation in the brains of patients with AD than in non-demented controls. In contrast to previous studies, most of these cells did not reveal the characteristic morphological hallmarks of apoptosis. Most dying cells were not located within amyloid deposits and most dying cells did not bear a tangle. On the other hand, being in physical contact with an amyloid deposit increased the risk of a cell to dye by factor 5.7 and carrying a neurofibrillary tangle imposed a 3 times higher risk compared to unaffected nerve cells. Taken together, these data indicate that nerve cell death in AD occurs via a mechanism of programmed cell death different from classical apoptosis. Eventhough plaques and tangles increase the risk of cells to degenerate, both lesions are not the sole responsibles of the degenerative process, suggesting the existence of other factors that trigger the initiation of the cell death program in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adlebiassette H, Levy Y, Colombel M, Poron F, Natchev F, Keohane C, Gray F (1995) Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21: 218–227

    Article  CAS  Google Scholar 

  • Agid Y (1995) Aging, disease and nerve cell death. J Neural Transm [GenSect] 102: I (abstr)

    Article  Google Scholar 

  • Anderson AJ, Cummings BJ, Cotman CW (1994) Increased immunoreactivity for Jun-and Fos-related proteins in Alzheimer’s disease: Association with pathology. Exp Neurol 125: 286–295

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Pike CJ, Cotman CW (1995) Differential induction of immediate early gene proteins in cultured neurons by ß-amyloid (A-ß) Association of c-Jun with A-ß induced apoptosis. J Neurochem 65: 1487–1498

    Article  PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1996) Apoptotic degeneration of nigral dopaminergic neurons in Parkinson’s disease. Neurology 46: A467 (abstr)

    Google Scholar 

  • Bancher C, Jellinger K, Lassmann H, Fischer P, Leblhuber F (1996a) Correlations between mental state and quantitative neuropathology in the Vienna Prospective Longitudinal Study on Dementia. Eur Arch Psychiatry Clin Neurosci 246: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Leitner H, Jellinger K, Eder H, Setinek U, Fischer P, Wegiel J, Wisniewski HM (1996b) On the relationship between measles virus and Alzheimer neurofibrillary tangles in subacute sclerosing panencephalitis. Neurobiol Aging 17: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Davis JB, Klier FG, Schubert D (1994) Amyloid ß peptide induces necrosis rather than apoptosis. Brain Res 645: 253–264

    Article  PubMed  CAS  Google Scholar 

  • Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral gray matter of elderly subjects. Brit J Psych 114: 797–811

    Article  CAS  Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995a) Apoptosis and necrosis — two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92: 7162–7166

    Article  PubMed  CAS  Google Scholar 

  • Bonfoco E, Cecatelli S, Manzo L, Nicotera P (1995b) Colchicine induces apoptosis in cerebellar granule cells. Exp Cell Res 218: 189–200

    Article  PubMed  CAS  Google Scholar 

  • Bredesen DE (1995) Neural apoptosis. Ann Neurol 38: 839–851

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Koh J-Y, Cotman CW (1991) ß-amyloid increases neuronal susceptibility to injury by glucose deprivation. Neuro Report 2: 763–765

    CAS  Google Scholar 

  • Copani A, Bruno V, Battaglia G, Leanza G, Pellitteri R, Russo A, Stanzani S, Nicoletti F (1995) Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by ß-amyloid peptide. Mol Pharmacol 47: 890–897

    PubMed  CAS  Google Scholar 

  • Cotman CW, Anderson AJ (1995) A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol 10: 19–45

    Article  PubMed  CAS  Google Scholar 

  • Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathological studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38: 1682–1687

    Article  PubMed  CAS  Google Scholar 

  • Delaere P, Duyckaerts C, Brion JP, Poulain V, Hauw JJ (1989) Tau, paired helical filaments and amyloid in the neocortex: a morphometric study of 15 cases with graded intellectual status in aging and senile dementia of Alzheimer’s type. Acta Neuropathol 77: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen S-H, Aronson MK (1991) Identification of normal and pathologic aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13: 179–189

    Article  Google Scholar 

  • Dragunow M, Faull RLM, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntigton’s disease striatum and Alzheimer’s disease temporal lobes. Neuro Report 6: 1053–1057

    CAS  Google Scholar 

  • Fischer P, Lassmann H, Jellinger K, Simanyi M, Bancher C, Travniczek-Marterer A, Gatterer G, Danielczyk W (1991) Die Demenz vom Alzheimer Typ. Eine klinische Längsschnittstudie mit quantitativer Neuropathologie. Wien Med Wochenschr 141:455–462

    PubMed  CAS  Google Scholar 

  • Forloni G, Chiesa R, Smiroldo S, Verga L, Salmona M, Tagliavini F, Angeretti N (1993a) Apoptosis mediated neurotoxicity induced by chronic application of ß-amyloid fragment 25–35. Neuro Report 4: 523–526

    CAS  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993b) Neurotoxicity of a prion protein fragment. Nature 362: 543–546

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Gold R, Schmied M, Rothe G, Zischler H, Breitschopf H, Wekerle H, Lassmann H (1993) Detections of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem 41: 1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Gold R, Schmied M, Giegerich G, Breitschopf H, Hartung HP, Toyka K, Lassmann H (1994) Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest 71: 219–225

    PubMed  CAS  Google Scholar 

  • Gschwind M, Huber G (1995) Apoptotic cell death induced by ß-amyloid 1–42 peptide is cell type dependent. J Neurochem 65: 292–300

    Article  PubMed  CAS  Google Scholar 

  • Iseki S (1986) DNA strand breaks in rat tissue as detected by in situ nick translation. Exp Cell Res 167: 311–326

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Bancher C, Fischer P, Lassmann H (1992) Quantitative histopathologic validation of senile dementia of the Alzheimer type. Eur J Gerontol 3: 146–156

    Google Scholar 

  • Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23: 138–144

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Miller DL, Sapienza VJ, Chen CM, Bai C, Grundke-Iqbal I, Currie JR, Wisniewski HM (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Commun 2:121–130

    CAS  Google Scholar 

  • Koh J-Y, Yang LL, Cotman CW (1990) ß-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 533: 315–320

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Le WD, Colom LV, Xie WJ, Smith RG, Alexianu M, Appel SH (1995) Cell death induced by ß-amyloid 1–40 in MES 23.5 hybrid clone — the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 686: 49–60

    Article  PubMed  CAS  Google Scholar 

  • Lo AC, Houenou LJ, Oppenheim RW (1995) Apoptosis in the nervous system — Morphological features, methods, pathology, and prevention. Arch Histol Cytol 58: 139–149

    Article  PubMed  CAS  Google Scholar 

  • Lockhart BP, Benicourt C, Junien JL, Privat A (1994) Inhibitors of free radical formation fail to attenuate direct ß-amyloid (23–35) peptide-mediated neurotoxicity in rat hippocampal cultures. J Neurosci Res 39: 494–505

    Article  PubMed  CAS  Google Scholar 

  • Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by ß-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90: 7951–7955

    Article  PubMed  CAS  Google Scholar 

  • Lucassen PJ, Chung WCJ, Vermeulen JP, Vanlookeren M, Vandierendonck CJH, Swaab DF (1995) Microvawe-enhanced in situ end-labeling of fragmented DNA — parametric studies in relation to postmortem delay and fixation of rat and human brain. J Histochem Cytochem 43: 1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146: 3–15

    PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B, Ravindra CR (1986) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol Appl Neurobiol 12: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Esiri M (1989) The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J Neurol Sci 89: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Terry RD, Mallory M, Alford M, Hansen LA (1990) Diffuse plaques do not accentuate synapse loss in Alzheimer’s disease. Am J Pathol 137: 1293–1297

    PubMed  CAS  Google Scholar 

  • Morris JC, McKeel DW Jr, Storandt M, Rubin EH, Price JL, Grant EA, Ball MJ, Berg L (1991) Very mild Alzheimer’s disease: Informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology 41: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, McKeel DW Jr, Rubin EH, Price JL, Grant EA, Berg L (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46: 707–719

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Akiyama H, Yonehara S, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (1995) Fas antigen expression in brains of patients with Alzheimer-type dementia. Brain Res 695: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Obarr S, Schultz J, Rogers J (1996) Expression of the protooncogene Bcl-2 in Alzheimer’s disease brain. Neurobiol Aging 17: 131–136

    Article  CAS  Google Scholar 

  • Petito CK, Roberts B (1995) Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146: 1121–1130

    PubMed  CAS  Google Scholar 

  • Pike CJ, Cotman CW (1993) Cultured GABA-immunoreactive neurons are resistant to toxicity induced by ß-amyloid. Neuroscience 56: 269–274

    Article  PubMed  CAS  Google Scholar 

  • Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by ß-amyloid peptides in vitro: The role of peptide assembly state. J Neurosci 13: 1676–1687

    PubMed  CAS  Google Scholar 

  • Pollard H, Cantagrel S, Charriaut-Marlangue C, Moreau J, Ari YB (1994) Apoptosis associated DNA fragmentation in epileptic brain damage. Neuro Report 5: 1053–1055

    CAS  Google Scholar 

  • Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15: 3775–3787

    PubMed  CAS  Google Scholar 

  • Satou T, Cummings BJ, Cotman CW (1995) Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer’s disease brain increases with disease severity. Brain Res 697: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53: 438–447

    Article  PubMed  CAS  Google Scholar 

  • Smale G, Nichols NR, Brady DR, Finch CE, Horton WE (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuro Report 5: 2529–2533

    CAS  Google Scholar 

  • Thomas LB, Gates DJ, Richfield EK, O’Brien TF, Schweitzer JB, Steindler DA (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson BE, Henderson G (1976) Some quantitative cerebral findings in normal and demented old people. In: Terry RD, Gershon S (eds) Neurobiology of Aging. Raven Press, NewYork, pp 183–204

    Google Scholar 

  • Wang GP, Grundke-Iqbal I, Kascak RJ, Iqbal K, Wisniewski HM (1984) Alzheimer neurofibrillary tangles: monoclonal antibodies to inherent antigens. Acta Neuropathol 62: 268–275

    Article  PubMed  CAS  Google Scholar 

  • Wettstein A, Lang W (1990) Correlation of cognitive skills in nursing home patients with histologic Alzheimer changes in specific brain areas. Dementia 1: 278–285

    Google Scholar 

  • Wilcock GK, Esiri MM (1982) Plaques, tangles and dementia. A quantitative study. J Neurol Sci 56: 343–356

    Article  PubMed  CAS  Google Scholar 

  • Wilcox BJ, Applegate MD, Portera-Cailliau C, Koliatsos VE (1995) Nerve growth factor prevents apoptotic cell death in injured central cholinergic neurons. J Comp Neurol 359: 573–585

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5: 288–294

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid ß protein: reversal by tachykinin neuropeptides. Science 250: 279–282

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Mesulam MM (1991) ß amyloid and the pathogenesis of Alzheimer’s disease. N Engl J Med 325: 1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Yamada T, Asanuma K, Asahi T (1994) Apoptosis related antigen, Le(Y) and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol 88: 207–211

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this paper

Cite this paper

Bancher, C., Lassmann, H., Breitschopf, H., Jellinger, K.A. (1997). Mechanisms of cell death in Alzheimer’s disease. In: Riederer, P., Calne, D.B., Horowski, R., Mizuno, Y., Poewe, W., Youdim, M.B.H. (eds) Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 50. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6842-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6842-4_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82898-4

  • Online ISBN: 978-3-7091-6842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics