Apoptosis in neurodegenerative disorders

  • H. Mochizuki
  • H. Mori
  • Y. Mizuno
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 50)


Although the exact mechanism of nigral cell death in Parkinson’s disease (PD) is not known, increasing evidence suggests the presence of apoptotic cell death in PD. When we applied the TUNEL method to detect DNA fragmentation, four out of seven late onset sporadic patients with PD showed TUNEL-positive neurons. The percentages of those neurons among the remaining melanin containing neurons were 0.6 to 4.8% (average 2.1%). But TUNEL-positive neurons could not be detected in control subjects as well as four patients with young onset (under 40 years of the age) PD. Numbers of nigral toxins such as MPTP, complex I inhibitors, and mitochondrial respiratory inhibitors have been reported to induced apoptotic cell death. These findings suggest that apoptosis is involved in nigral cell cleath in PD at least in part and warrant further studies on apoptosis-related substances in PD.


Spinal Muscular Atrophy TUNEL Method Postmortem Time Autographa Californica Nuclear Polyhedrosis Virus Cerebellar Granular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anglade P, Vyas S, Jovoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch BC, Agid Y (1995) Apoptotic degeneration of nigral dopaminergic neurons in Parkinson’s disease. Society for Neuroscience Abstract 21 (Part 1): 1250Google Scholar
  2. Behl C, Davis B, Klier FG, Schubert H (1994) Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res 645: 253–264PubMedCrossRefGoogle Scholar
  3. Boka G, Anglade P, Wallach D, Agid J, Agid Y, Hirsch EC (1994) Immunohistochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172: 151–154PubMedCrossRefGoogle Scholar
  4. Bredesen DE (1995) Neural apoptosis. Ann Neurol 38: 839–851PubMedCrossRefGoogle Scholar
  5. Brown RH, Jr (1995) Amyotrophic lateral sclerosis: recent insights form genetics and transgenic mice. Cell 80: 687–692PubMedCrossRefGoogle Scholar
  6. Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P, Licari P, Mankovich J, Shi L, Greenberg AH, Miller LK, Wong WW (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885–1888PubMedCrossRefGoogle Scholar
  7. Choi DW, Maulucci-Gedde MA, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell cultures. J Neurosci 7: 357–368PubMedGoogle Scholar
  8. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181: 195–213PubMedCrossRefGoogle Scholar
  9. Clem RJ, Miller LK (1994) Control of programmed cell death by the baculovirus genes p35 and IAP. Mol Cell Biol 14: 5212–5222PubMedGoogle Scholar
  10. Cohen JJ (1991) Programmed cell death in the immune system. Adv Immunol 50: 55–85PubMedCrossRefGoogle Scholar
  11. Cohen JJ (1993) Apoptosis. Immunol Today 14: 126–130PubMedCrossRefGoogle Scholar
  12. Dipasquale B, Marini M, Youl RJ (1991) Apoptosis and DNA degradation by 1-methyl-4-phenylpyridinium in neurons. Biochem Biophys Res Commun 181: 1442–1448PubMedCrossRefGoogle Scholar
  13. Dragunow M, Faull RLM, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuro Report 6: 1053–1057Google Scholar
  14. Engele J, Bohn MC (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J Neurosci 11: 3070–3078PubMedGoogle Scholar
  15. Esteban J, Rosen DR, Bowling AC, Sapp P, McKenna-Yasek D, O’Regan JP, Beal MF, Horvitz HR, Brown RH Jr (1994) Identification of two novel mutations and a new polymorphism in the gene for Cu/Zn superoxide dismutase in patients with amyorophic lateral sclerosis. Hum Mol Genetics 3: 997–998CrossRefGoogle Scholar
  16. Forloni G, Chiesa R, Smiroldo S, Verga L, Salmone M, Tagliavini F, Angeretti N (1993) Apoptosis-/mediated neurotoxicity induced by chronic application of beta amyloid fragment. Neuro Report 4: 523–526Google Scholar
  17. Finiels F, Robert JJ, Samolyk ML, Privat A, Mallet J, Revah F (1995) Induction of neuronal apoptosis by excitotoxins associated with long-lasting increase of 12-0-tetradecanoylphorbol 13-acetate-responsive element-binding activity. J Neurochem 65: 1027–1034PubMedCrossRefGoogle Scholar
  18. Friesen PD, Miller LK (1987) Divergent transcription of early 35- and 94-kilodalton protein genes encoded by the HindIIIK gene genome fragment of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 61: 2264–2272PubMedGoogle Scholar
  19. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255PubMedCrossRefGoogle Scholar
  20. Garcia I, Martinou I, Tsujimoto, Martinou JC (1992) Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 258: 302–304PubMedCrossRefGoogle Scholar
  21. Gold R, Schmied M, Giegerich G, Breitschopf H, Hartung HP, Toyka KV, Lassmann H (1994) Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest 71: 219–225PubMedGoogle Scholar
  22. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21: 1465–1468PubMedGoogle Scholar
  23. Greenlund LJS, Deckwerth TL, Johnson EM Jr (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–315PubMedCrossRefGoogle Scholar
  24. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772–1775PubMedCrossRefGoogle Scholar
  25. Hartley A, Stone JM, Heron C, cooper JM, Schapira AHV (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 63: 1987–1990PubMedCrossRefGoogle Scholar
  26. Hengartner MP, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian protooncogene bc1-2. Cell 76: 665–676PubMedCrossRefGoogle Scholar
  27. Hiraishi K, Suzuki K, Hakomori S, Adachi M (1993) LeY antigen expression is correlated with apoptosis (programmed cell death). Glycobiology 3: 381–390PubMedCrossRefGoogle Scholar
  28. Itano Y, Kitamura Y, Nomura Y (1994) 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death in PC12 cells: inhibitory effects of several drugs. Neurochem Int 25: 419–425PubMedCrossRefGoogle Scholar
  29. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82: 2173–2177PubMedCrossRefGoogle Scholar
  30. Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CG (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann Neurol 32: S82–S87PubMedCrossRefGoogle Scholar
  31. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Örd T, Bredesen DE (1993) Bc1-s inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277PubMedCrossRefGoogle Scholar
  32. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  33. Kitajima I, Kawahara K, Nakajima T, Soejima Y, Matsuyama T, Maruyama I (1994) Nitric oxide-mediated apoptosis in murine mastocytoma. Biochem Biophys Res Commun 204: 244–251PubMedCrossRefGoogle Scholar
  34. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35–41PubMedCrossRefGoogle Scholar
  35. Lin LF, Doherty D, Lile J, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132PubMedCrossRefGoogle Scholar
  36. Liston P, Roy N, Tamai K, Lefebre C, Baird S, Cherton-Hovat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353PubMedCrossRefGoogle Scholar
  37. Lockshin R, Beaulaton J (1974) Programmed cell death. Life Sci 15: 1549–1565PubMedCrossRefGoogle Scholar
  38. Lockshin RA, Williams CM (1964) Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10: 643–649CrossRefGoogle Scholar
  39. Loo DT, Copani A, Pike CJ, Whitemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by ß-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90: 7951–7955PubMedCrossRefGoogle Scholar
  40. Macaya A, Munell F, Gubits RM, Burke RE (1994) Apoptosis in substantia nigra following developmental striatal excitotoxic injury. Proc Natl Acad Sci USA 91: 8117–8121PubMedCrossRefGoogle Scholar
  41. Mah SP, Zhong LT, Liu Y, Edwards RH, Bredesen DE (1993) The protooncogene bcl-2 inhibits apoptosis in PC12 cells. J Neurochem 60: 1183–1186PubMedCrossRefGoogle Scholar
  42. Martin SJ, Green DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82: 1–20CrossRefGoogle Scholar
  43. Martinou JC, Dubois-Dauphin M, Staple JK, Rodoriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Carsicas S, Pietra C, Huarte J (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and expermental ischemia. Neuron 13: 1017–1030PubMedCrossRefGoogle Scholar
  44. Migheli A, Cavalla P, Piva R, Giordana MT, Schiffer D (1994) Bcl-2 protein expression in aged and neurodegenerative diseases. Clin Neurosci Neuropath 5: 1906–1908Google Scholar
  45. Mizuno Y, Saitoh T, Sone N (1987) Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by l-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun 143: 294–299PubMedCrossRefGoogle Scholar
  46. Mizuno Y, Ikebe S, Hattori N, Nakagawa-Hattori H, Mochizuki H, Tanaka M, Ozawa T (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1271: 265–274PubMedCrossRefGoogle Scholar
  47. Mochizuki H, Nakamura N, Nishi K, Mizuno Y (1994) Apoptosis is induced by 1-methyl-4-phenylpyridinium ion (MPP+) in a ventral mesencephalic-striatal co-culture. Neurosci Lett 170: 191–194PubMedCrossRefGoogle Scholar
  48. Mochizuki H, Goto G, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci (in press)Google Scholar
  49. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis-α (TNF- α) increase both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165: 208–210PubMedCrossRefGoogle Scholar
  50. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1ß, epidermal growth factor and transforming growth factor- α are elevated in the brain from parkinsonian patients. Neurosci Lett 180: 147–150PubMedCrossRefGoogle Scholar
  51. Munsat TL (1991) Workshop report: international SMA collaboration. Neuromusc Disord 1: 81CrossRefGoogle Scholar
  52. Myers KM, Fiskum G, Liu Y, Simmens SJ, Bredesen DE, Murphy AN (1995) Bcl-s protects neural cells from cyanide/aglycemia induced Upid oxidation, mitochondrial injury, and loss of viability. J Neurochem 65: 2432–2440PubMedCrossRefGoogle Scholar
  53. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43PubMedCrossRefGoogle Scholar
  54. Otto D, Unsicker K (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J Neurosci 10: 1912–1921PubMedGoogle Scholar
  55. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15: 3775–3787PubMedGoogle Scholar
  56. Rabizabeh S, LaCount DJ, Friesen PD, Bredesen DE (1993) Expression of the baculo-virus p35 gene inhibits mammalian neural cell death. J Neurochem 61: 2318–2321CrossRefGoogle Scholar
  57. Rabizabeh S, Gralla EB, Borchelt DR, Gwinn R, Valentine JS, Sisodia S, Wong P, Lee M, Hahn H, Bredesen DE (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci USA 92: 3024–3028CrossRefGoogle Scholar
  58. Rosen ER, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella S, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62PubMedCrossRefGoogle Scholar
  59. Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, Salih M, Aubry H, Tamai K, Guan X, Ioannou P, Crawford TO, de Jong PJ, Surh L, Ikeda J, Korneluk RG, MacKenzie A (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178PubMedCrossRefGoogle Scholar
  60. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial Complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827PubMedCrossRefGoogle Scholar
  61. Siman R, Card JP (1988) Excitatory amino acid neurotoxicity in hippocampal slice preparation. Neuroscience 26: 433–447PubMedCrossRefGoogle Scholar
  62. Su JH, Anderson A, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuro Report 5: 2529–2533Google Scholar
  63. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhab-ditis elegans. Dev Biol 82: 110–156CrossRefGoogle Scholar
  64. Takayama H, Ray J, Raymon HK, Baird A, Hogg J, Fisher LJ, Gage FH (1995) Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nature Medicine 1: 53–58PubMedCrossRefGoogle Scholar
  65. Thery C, Stanley ER, Mallat M (1992) Interleukin 1 and tumor necrosis factor-a stimulate the production of colony-stimulating factor 1 by murine astrocytes. J Neurochem 59: 1183–1186PubMedCrossRefGoogle Scholar
  66. Tingsborg S, Zetterstrom M, Alheim K, Hasanvan H, Schultzberg M, Bartfai T (1996) Regionally specific induction of ICE mRNA and enzyme activity in the rat brain and adrenal gland by LPS. Brain Res 712: 156–158CrossRefGoogle Scholar
  67. Tompkins MM, Hill WD (1995) Apoptotic-like changes in human substantia nigra. Society for Neuroscience Abstract 21 (Part 1): 1273Google Scholar
  68. Tooyama I, Kawamata T, Walker D, Yamada T, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL (1993) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 43: 372–376PubMedCrossRefGoogle Scholar
  69. Tsujimoto Y, Finger L, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosomebreakpoint of neoplastic В cells with the t(14;18) chromosome translocation. Science 226: 1097–1099PubMedCrossRefGoogle Scholar
  70. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnaine W (1994) Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339: 40–44PubMedCrossRefGoogle Scholar
  71. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556PubMedCrossRefGoogle Scholar
  72. Yoshiyama Y, Yamada T, Asanuma K, Asahi T (1994) Apoptosis related antigen, LeY and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol 88: 207–211PubMedCrossRefGoogle Scholar
  73. Yuan J, Horvitz HR (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138: 33PubMedCrossRefGoogle Scholar
  74. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The С elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1ß-converting enzyme. Cell 75: 641–652PubMedCrossRefGoogle Scholar
  75. Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D, Barzilai A (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons - a possible novel pathogenetic mechanism in Parkinson’s disease. Neurosci Lett 170: 136–140PubMedCrossRefGoogle Scholar
  76. Zhong LT, Kane D, Bredesen D (1993) BCL-2 blocks glutamate toxicity in neural cell lines. Mol Brain Res 19: 353–355PubMedCrossRefGoogle Scholar
  77. Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, Bredesen DE (1993) bc1-s inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 90: 4533–4537PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • H. Mochizuki
    • 1
  • H. Mori
    • 1
  • Y. Mizuno
    • 1
  1. 1.Department of NeurologyJuntendo University School of MedicineBunkyo, TokyoJapan

Personalised recommendations