Skip to main content

Quantitative Infrared Intensities of Neat Liquids: Their Measurement and Use

  • Conference paper
Book cover Progress in Fourier Transform Spectroscopy

Part of the book series: Mikrochimica Acta Supplement ((MIKROCHIMICA,volume 14))

Abstract

This paper presents a summary of some of the work done in this laboratory over the past 6 years. It has become clear that well-aligned modern Fourier transform spectrometers are sufficiently photometrically accurate and sufficiently free from major differences between users that absolute infrared absorption intensities can be determined and transferred between well-aligned instruments with an error not exceeding about 2%. It is essential, however, to correct the baselines of transmission spectra, on the basis of measurements in cells with very long path-lengths. Such developments have led to the establishment of intensity standards for infrared spectroscopy of liquids. These have been accepted by the International Union of Pure and Applied Chemistry, and published. Such developments have also led to the reliable determination of relatively small intensity differences, such as those caused by isotopic substitution or by change in the intermolecular environment in binary liquid mixtures. Knowledge of correct intensities has allowed the development of an approximate procedure that greatly simplifies the computations. On the theoretical side, the availability of accuracy to within 2% has created the need to develop methods for obtaining molecular information from absorption intensities which introduce errors no larger than ~ 0.1 %, so that the experimental accuracy is not degraded by avoidable theoretical approximations. A major issue is the determination of the integrated intensities of overlapping bands and the assignment of the intensity under the baseline. The most appropriate intensity quantity to use is the imaginary molar polarizability, \( {\alpha ''_m}(\tilde \nu ) \). The spectrum of this quantity has been little used, but can be obtained easily with modern computerized spectrometers from transmission spectra, attenuated total reflection spectra, or specular reflection spectra. Most bands in the \( {\alpha ''_m} \) spectrum of non-hydrogen-bonded liquids have essentially the Classical Damped Harmonic oscillator shape, and carefully fitting such bands to the spectrum is currently the most objective way to determine the integrated intensities. All the intensity above zero ordinate is usually explained by such fits if the \( {\alpha ''_m} \) spectra were calculated from baseline-corrected experimental absorbance spectra. These points are illustrated in this paper by spectra taken from recent work in this laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Bertie, S. L. Zhang, H. H. Eysel, S. Baluja, M. K. Ahmed, Appl. Spectrosc. 1993, 47, 1100.

    Article  CAS  Google Scholar 

  2. J. E. Bertie, S. L. Zhang, C. D. Keefe, J. Mol. Struct. 1994, 324, 157.

    Article  CAS  Google Scholar 

  3. I. Mills, T. Cvitaš, K. Homann, N. Kallay, K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry, 2nd Ed., International Union of Pure and Applied Chemistry, Blackwell, Oxford, 1988, p. 32.

    Google Scholar 

  4. J. E. Bertie, C. D. Keefe, R. N. Jones, Can. J. Chem. 1991, 69, 1609.

    Article  CAS  Google Scholar 

  5. J. P. Hawranek, P. Neelakantan, R. P. Young, R. N. Jones, Spectrochim. Acta 1976, 32A, 75.

    CAS  Google Scholar 

  6. T. G. Goplen, D. G. Cameron, R. N. Jones, Appl. Spectrosc. 1980, 34, 657.

    Article  CAS  Google Scholar 

  7. J. E. Bertie, R. N. Jones, C. D. Keefe, Appl. Spectrosc. 1993, 47, 891.

    Article  CAS  Google Scholar 

  8. J. E. Bertie, S. L. Zhang, C. D. Keefe, Vib. Spectrosc. 1995, 8, 215.

    Article  CAS  Google Scholar 

  9. J. E. Bertie, R. N. Jones, Y. Apelblat, C. D. Keefe, Appl. Spectrosc. 1994, 48, 127.

    Article  CAS  Google Scholar 

  10. J. E. Bertie, R. N. Jones, Y. Apelblat, Appl. Spectrosc. 1994, 48, 144.

    Article  CAS  Google Scholar 

  11. J. E. Bertie, Z. Lan, R. N. Jones, Y. Apelblat, Appl. Spectrosc. 1995, 49, 840.

    Article  CAS  Google Scholar 

  12. J. E. Bertie, C. D. Keefe, R. N. Jones, Tables of Intensities for the Calibration of Infrared Spectroscopic Measurements in the Liquid Phase, International Union of Pure and Applied Chemistry, Blackwell, Oxford, 1995.

    Google Scholar 

  13. J. E. Bertie, Y. Apelblat, R. N. Jones, C. D. Keefe, S. L. Zhang, Appl. Spectrosc. 1995, 49, 1821.

    Article  CAS  Google Scholar 

  14. J. E. Bertie, H. H. Eysel, Appl. Spectrosc. 1985, 39, 392.

    Article  CAS  Google Scholar 

  15. J. E. Bertie, H. Harke, M. K. Ahmed, H. H. Eysel, Croat. Chem. Acta 1988, 61, 391.

    CAS  Google Scholar 

  16. J. E. Bertie, S. L. Zhang, R. Manji, Appl. Spectrosc. 1992, 46, 1660.

    Article  CAS  Google Scholar 

  17. S. E. Bertie, Y. Apelblat, Appl. Spectrosc. 1996, 50, 1039.

    Article  CAS  Google Scholar 

  18. S. L. Zhang, J. Chem. Phys. submitted.

    Google Scholar 

  19. J. E. Bertie, S. L. Zhang, Appl. Spectrosc. 1994, 48, 176.

    Article  CAS  Google Scholar 

  20. J. E. Bertie, S. L. Zhang, J. Chem. Phys. 1994, 101, 8364.

    Article  CAS  Google Scholar 

  21. H. Torii, M. Tasumi, J. Chem. Phys. 1993, 99, 8459.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this paper

Cite this paper

Bertie, J.E. (1997). Quantitative Infrared Intensities of Neat Liquids: Their Measurement and Use. In: Mink, J., Keresztury, G., Kellner, R. (eds) Progress in Fourier Transform Spectroscopy. Mikrochimica Acta Supplement, vol 14. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6840-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6840-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82931-8

  • Online ISBN: 978-3-7091-6840-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics