Advertisement

Point defect parameter extraction through their reaction with dislocation loops

  • D. Skarlatos
  • C. Tsamis
  • M. Omri
  • A. Claverie
  • D. Tsoukalas
Conference paper

Abstract

In this work we use dislocation loops to monitor the interstitial injection during the oxidation of silicon at low temperatures (850 – 950 °C). The interstitials captured by the loops are measured using Transmission Electron Microscopy and the number of silicon atoms that are injected into the silicon bulk during oxidation can be estimated. A model is then developed that considers the above measurements and accounts for the silicon supersaturation in the loop layer and subsequently for the flux of injected interstitials during oxidation that is compared with SUPREM IV results. Simulation of loop evolution using FLOOPS simulator permits an estimation of the capturing efficiency of loops in the temperature range of experiments.

Keywords

Silicon Atom Dislocation Loop Capture Efficiency Silicon Bulk Supersaturation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [l]
    H. L. Meng, S. Prussin, M. E. Law and K. S. Jones, J. Appl. Phys., 73, 955 (1993)CrossRefGoogle Scholar
  2. [2]
    D. Skarlatos, M. Omri, C. Tsamis, A. Claverie and D. Tsoukalas, Silicon Material Science and Technology Symposium, The Electrochemical Soc., 98-1, p. 914 (1998)Google Scholar
  3. [3]
    R. Y. S. Huang and R. W. Dutton, J. Appl. Phys., 74, 5821 (1993)CrossRefGoogle Scholar
  4. [4]
    H. Park, H. Robinson, K. S. Jones and M. Law, Appl. Phys. Lett., 65, 436 (1994)CrossRefGoogle Scholar
  5. [5]
    S. M Hu, in Defects in Semiconductors, J. Narayan and T. Y. Tan, Editors, p. 333, North-Holland, New York (1981)Google Scholar
  6. [6]
    C. Bonafos, M. Omri, B. de Mauduit, G. BenAssayag, A. Claverie, D. Alquier, A. Martinez and D. Mathiot, J. Appl. Phys., 82, 2855 (1997)CrossRefGoogle Scholar
  7. [7]
    G. B. Bronner and J. D Plummer, J. Appl. Phys, 61, 5286 (1987)CrossRefGoogle Scholar
  8. [8]
    P. A. Packan and J. D. Plummer, J. Appl. Phys, 53, 6788 (1990)Google Scholar
  9. [9]
    H. Park, K. S. Jones and M. E. Law, J. Electrochem. Soc, 141, 759 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • D. Skarlatos
    • 1
  • C. Tsamis
    • 1
  • M. Omri
    • 2
  • A. Claverie
    • 2
  • D. Tsoukalas
    • 1
  1. 1.Institute of MicroelectronicsNCSR ‘Demokritos’Aghia ParaskeviGreece
  2. 2.CEMES/CNRSCedex ToulouseFrance

Personalised recommendations