Industrial Demands on Process and Device Simulation

  • A. v. Schwerin
  • A. Spitzer
Conference paper


In this paper, we will give our view of the role of TCAD in the industrial technology development process, as well as of the division of labor between industrial TCAD, vendors of commercial TCAD software, and academia. Furthermore a list of model shortcomings is presented that — we feel still — prevent broad productive use of TCAD in industrial technology development. In the end we will define our primary demands for future development work on process and device simulation by vendors and institutes and our vision of the role of TCAD frameworks.


Monte Carlo Chemical Mechanical Polishing Device Simulation Dynamic Random Access Memory Dislocation Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Selberherr, A. Schuetz, and H. Poetzl, “MINIMOS — A two dimensional MOS transistor analyzer,” IEEE Trans. Electron Devices, vol. ED-27, pp. 1540–1550, 1980.CrossRefGoogle Scholar
  2. [2]
    M. E. Law, “Two dimensional numerical simulation of dopant diffusion in silicon,” Ph.D. dissertation, Stanford University, Stanford, CA, 1988.Google Scholar
  3. [3]
    M. R. Pinto, C. S. Rafferty, H. R. Yeager, and R. W. Dutton, “PISCES-IIB - Poisson and continuity equation solver,” Stanford Electronics Lab. Tech. Rep., Stanford Univ., Feb., 1986.Google Scholar
  4. [4]
    “TSUPREM-4, Two-dimensional process simulation program,” Version 6.5, User’s Manual, Technology Modeling Associates, May, 1997.Google Scholar
  5. [5]
    C.-C. Lin and M. Law, “2-D adaptive simulation of dopant implantation and diffusion,” Proc. of SISPAD, vol. 6, pp. 282–285, Erlangen, 1995.Google Scholar
  6. [6]
    D. Yergeau, E. Kan, M. Gander, and R. Dutton, “ALAMODE: A layered model development environment,” Proc. of SISPAD, vol. 6, pp. 66–69, Erlangen, 1995.Google Scholar
  7. [7]
    J. Litsios, B. Schmithusen, and W. Fichtner, “Large scale thermal mixed mode device and circuit simulation,” Proc. of SISPAD, vol. 6, pp. 368–371, Erlangen, 1995.Google Scholar
  8. [8]
    T. Simlinger, H. Kosina, M. Rottinger, and S. Selberherr, “MINIMOS-NT: A generic simulator for complex semiconductor devices,” Proc. ESSDERC, pp. 83–86, 1995.Google Scholar
  9. [9]
    S. Villa, A. Lacaita, L. Perron, and R. Bez, “A physically-based model of the effective mobility in heavily-doped n-MOSFETs,” IEEE Trans. Electron Devices, vol. ED-45, pp. 110–115, 1998.CrossRefGoogle Scholar
  10. [10]
    M. van Dort, P. Woerlee, A. Walker, C. Juffermans, and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-subµm MOSFETs,” IEEE Trans. Electron Devices, vol. ED-39, pp. 932–938, 1992.CrossRefGoogle Scholar
  11. [11]
    P. Smeys, P. Griffin, and K. Saraswat, “Influence of post-oxidation cooling rate on residual stress and pn-junction leakage current in LOCOS isolated structures,” IEEE Trans. Electron Devices, vol. ED-43, pp. 1989–1993, 1996.CrossRefGoogle Scholar
  12. [12]
    R. Jones, Jr., P. Maniar, R. Moazzami, P. Zurcher, J. Witowski, Y. Lii, P. Chu, and S. Gillespie, “Ferroelectric non-volatile memories for low-voltage, low-power applications,” Proc. on Thin Solid Films, vol. 270, pp. 584–585, San Diego,CA, 1995.CrossRefGoogle Scholar
  13. [13]
    D. Tang, P. Wang, V. Speriosu, S. Le, R. Fontana, and S. Rishton, “An IC process compatible nonvolatile magnetic RAM,” IEDM Tech. Dig., pp. 997–1000, Washington, DC, 1995.Google Scholar
  14. [14]
    K. Quader, E. Minami, Wei-Jen Ko, P. Ko, and Chenming Hu, “Hot-carrier-reliability design guidelines for CMOS logic circuits,” IEEE J. Sol.-State Circuits, vol. 29, pp. 253–262, 1994.CrossRefGoogle Scholar
  15. [15]
    Ching-Chao Huang, Kyung Suk Oh, Shun-Lien Wang, and S. Panchapakesan, “Improving the accuracy of on-chip parasitic extraction,” Proc. on Electrical Performance of Electronic Packaging, pp. 42–45, San Jose, CA, 1997.Google Scholar
  16. [16]
    J. Power, B. Donnellan, A. Mathewson, and W. Lane, “Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design,” IEEE Trans.Semicon. Manufact. vol. 7, p. 306–318, 1994.CrossRefGoogle Scholar
  17. [17]
    F. Lau, L. Mader, C. Mazure, C. Werner, and M. Orlowski, “A model for phosphorus segregation at the silicon-silicon dioxide interface,” Appl. Phys. Avol. A49, pp. 671–675, 1989.CrossRefGoogle Scholar
  18. [18]
    S. Dunham, “A quantitative model for the coupled diffusion of phosphorus and point defects in silicon,” J. Electrochem. Soc., vol. 139, pp. 2628–2636, 1992.CrossRefGoogle Scholar
  19. [19]
    P. Griffin, R. Lever, R. Huang, H. Kennel, P. Packan, and J. Plummer, “Species, dose and energy dependence of implant induced transient enhanced diffusion,” IEDM Tech. Dig., pp. 295–298, Washington, DC, 1993Google Scholar
  20. [20]
    H. Chao, P. Griffin, J. Plummer, “The influence of amorphizing implants on boron diffusion in silicon,” Proc. of the MRS Symp., pp. 347–352, San Francisco, CA, 1997.Google Scholar
  21. [21]
    H. Ho,E. Hammerl, R. Stengl, and J. Benedict, “Dislocation formation in trench based dynamic random access memory (DRAM) chips,” Proc. of the MRS Symp., pp. 459–466, Boston, MA, 1995.Google Scholar
  22. [22]
    M. Dellith, G. Booker, B. Kolbesen, W. Bergholz, and F. Gelsdorf, “A dislocation formation model of trench-induced dislocations in dynamic random access memories,” J. Electrochem. Soc., vol. 143, pp. 210–215, 1996.CrossRefGoogle Scholar
  23. S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi, and T. Kunio, “Scaling possibility of PZT capacitors for high density and low-voltage NVFRAM application,” In- teg. Ferroelectrics, vol. 17, pp. 81–88, Santa Fe, NM, 1997.CrossRefGoogle Scholar
  24. [24]
    J. Lee, N. Layadi, K. Guinn, H. Maynard, F. Klemens, D. Ibbotson, I. Tepermeister, P. Egan, and R. Richardson, “Comparison of advanced plasma sources for etching applications. V. Polysilicon etching rate, uniformity, profile control, and properties in a helical resonator plasma source,” J. Vac. Sci. & Tech.B, vol. 14, pp. 2510–2518, 1996.CrossRefGoogle Scholar
  25. [25]
    Kim Yoo-Hyon, Kim Tai-Kyung, Lee Hoong-Joo, Kong Jeong-Taek, and Lee Sang- Hoon, “CMP profile simulation using an elastic model based on nonlinear contact analysis,” Proc. of SISPAD, pp. 69–72, Cambridge, MA, 1997.Google Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • A. v. Schwerin
    • 1
  • A. Spitzer
    • 2
  1. 1.Semiconductor GroupSiemens AGMunichGermany
  2. 2.Corporate ResearchSiemens AGMunichGermany

Personalised recommendations