Anisotropic Ballistic In—Plane Transport of Electrons in Strained Si

  • F. M. Bufler
  • S. Keith
  • B. Meinerzhagen
Conference paper


Stationary velocity—field characteristics and transient velocity overshoot along the 〈100〉 and 〈110〉 field directions are investigated at 300 K with full—band Monte Carlo simulation for electrons in unstrained and (001)-strained Si grown on a Si0.7Ge0.3 substrate. A pronounced anisotropy of more than 30% is found for the overshoot peak in strained Si, attaining in the advantageous 〈100〉 direction a peak value of 3.4 x 107 cm/s for a suddenly applied field of 100 kV/cm. The energy relaxation time, necessary for hydrodynamic device simulation of the overshoot effect, changes from 0.3 ps in unstrained Si to 0.4 ps in strained Si.


Drift Mobility Full Band Velocity Overshoot Energy Relaxation Time Nanometer Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. Wong, “CMOS scaling into the nanometer regime,” Proc. IEEE, vol. 85, pp. 486–504, 1997.CrossRefGoogle Scholar
  2. [2]
    Y. Tagawa, Y. Awano, and N. Yokoyama, “Anisotropic hole velocity overshoot in GaAs and Si,” in HCIS Abstracts, p. ThP34, 1997.Google Scholar
  3. [3]
    H. Miyata, T. Yamada, and D. K. Ferry, “Electron transport properties of a strained Si layer on a relaxed Si1−xGex substrate by Monte Carlo simulation,” Appl. Phys. Lett., vol. 62, pp. 2661–2663, 1993.CrossRefGoogle Scholar
  4. [4]
    T. Vogelsang and R. K. Hofmann, “Electron transport in strained si layers on Si 1-x Ge xsubstrates,” Appl. Phys. Lett, vol. 63, pp. 186–188, 1993.CrossRefGoogle Scholar
  5. [5]
    F. M. Bufler, P Graf, S. Keith, and B. Meinerzhagen, “Full band Monte Carlo investigation of electron transport in strained Si grown on Si1-xGex substrates,” Appl. Phys. Lett., vol. 70, pp. 2144–2146, 1997.CrossRefGoogle Scholar
  6. [6]
    S. Keith, F. M. Bufler, and B. Meinerzhagen, “Full band Monte-Carlo device simulation of an 0.1 µm n-channel MOSFET in strained silicon material,” in Proc. ESSDERC, vol. 27, pp. 200–203, 1997.Google Scholar
  7. [7]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1-xGex alloys on Si1-yGeysubstrates,” Phys. Rev. B, vol. 48, pp. 14276–14287, 1993.CrossRefGoogle Scholar
  8. [8]
    C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials,” Rev. Mod. Phys., vol. 55, pp. 645–705, 1983.CrossRefGoogle Scholar
  9. [9]
    F. M. BuflerFull-Band Monte Carlo Simulation of Electrons and Holes in strained Si and SiGe. Munich: Herbert Utz Verlag, 1998 ( Scholar
  10. [10]
    C. Canali, G. Ottaviani, and A. Alberigi-Quaranta, “Drift velocity of electrons and holes and associated anisotropic effects in silicon,” J. Phys. Chem. Solids vol. 32, pp. 1707–1720, 1971.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • F. M. Bufler
    • 1
  • S. Keith
    • 2
  • B. Meinerzhagen
    • 2
  1. 1.Institut für Integrierte SystemeETH ZürichZürichSwitzerland
  2. 2.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations