Discretization of the Brillouin Zone by an Octree/Delaunay Method with Application to Full-Band Monte Carlo Transport Simulation

  • Björn Fischer
  • Karl R. Hofmann
Conference paper


We present a fast octree/Delaunay method to generate a structured tetrahedral mesh in the Brillouin zone perfectly suited for the use with full-band Monte Carlo algorithms. The method permits local mesh refinements maintaining congruent tetrahedral face neighbors. Using Lagrange’s remainder formula an estimate for the discretization error of the tetrahedral mesh elements is given. The method has been applied to investigate the influence of mesh refinements on full-band Monte Carlo transport simulations in silicon. In comparison with experimental data it is shown that high local mesh refinements are crucial to obtain accurate transport simulation results.


Brillouin Zone Mesh Point Mesh Refinement Discretization Error Tetrahedral Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.V. Fischetti and S.E. Laux, ESSDERC 26, 813, 1996Google Scholar
  2. [2]
    P.D. Yoder, PhD thesis, University of Illinois, 1994Google Scholar
  3. [3]
    T. Kunikiyo et al, J. Appl. Phys 75, 297, 1994CrossRefGoogle Scholar
  4. [4]
    N. Sano and A. Yoshii, Phys. Rev. B 45, 4171, 1992CrossRefGoogle Scholar
  5. J. Bude, R.K. Smith, Semicond. Sci. Technol. 9, 840, 1994Google Scholar
  6. [6]
    C. Jungemann, ESSDERC 26, 821, 1996Google Scholar
  7. [7]
    E. Wang et al., SISPAD’96, 67, 1996Google Scholar
  8. [8]
    N. Hitschfeld, IEEE Trans. CAD/ICAS 12, 1714, 1993Google Scholar
  9. [9]
    W.J. Schroeder and M.S. Shepard, Int. J. Numer. Methods Eng. 29, 37, 1990MATHCrossRefGoogle Scholar
  10. [10]
    D.F. Watson, The Computer Journal 24, 167, 1981MathSciNetCrossRefGoogle Scholar
  11. [11]
    M.M. Rieger and P. Vogl, Phys. Rev. B 48, 14276, 1993CrossRefGoogle Scholar
  12. [12]
    P. Ciarlet and C. Wagschal, Numer. Math. 17, 84, 1971MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Vogl, private communication, 1998 Google Scholar
  14. [14]
    C. Canali et al, J. Phys. Chem. Solids 32, 1707, 1971CrossRefGoogle Scholar
  15. [15]
    P.M. Smith et al, Appl. Phys. Lett. 39, 332, 1981CrossRefGoogle Scholar
  16. [16]
    O. Madelung (ed.), Semiconductors, Springer-Verlag, Berlin, 1991Google Scholar

Copyright information

© Springer-Verlag Vienna 1998

Authors and Affiliations

  • Björn Fischer
    • 1
  • Karl R. Hofmann
    • 1
  1. 1.IHT, University of HannoverHannoverGermany

Personalised recommendations