Microsystem CAD: From FEM to System Simulation

  • Peter Schwarz
Conference paper


Microsystem technology is a highly interdisciplinary area. Therefore, a combination of different CAD methods and tools is necessary for supporting microsystem design. Process and device simulation are absic CAD methods but more and more higher levels of abstraction nedd to be applied in order to analyze microsystems adequately. This paper summarizes several modeling and simulation strategies for system simulation of microsystems on different levels of abstraction: generalized Kirchhiffian networks, black-box models, macromodels, the application of hardware description languages, and simulator coupling.


Finite State Machine Ordinary Differential Equation Partial Differential Equation Simulator Coupling Hardware Description Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Box, G.E.P.; Draper, N.R.: Empirical Model Building and Response Surfaces. Wiley, 1987Google Scholar
  2. [2]
    Casinovi, G.; Sangiovanni-Vincentelli, A.: A macromodeling algorithm for analog circuits. IEEE Trans. CAD-10(1991)2, 150–160Google Scholar
  3. [3]
    Cellier, F. E.: Continuous System Modeling. Berlin: Springer-Verlag, 1991.MATHGoogle Scholar
  4. [4]
    Clauß, C.; Haase, J.; Schwarz, P.: An approach to analogue behavioural modelling. Proc. VHDL User Forum Europe, Dresden, May 1996, pp. 85–96Google Scholar
  5. [5]
    Conelly, J.A.; Choi, P.: Macromodeling with SPICE. Prentice Hail, Englewood Cliffs 1992Google Scholar
  6. [6]
    Crary, S. B.; Zhang, Y.: CAEMEMS: An integrated computer-aided engineering workbench for micro- electro mechanical systems. Proc. MEMS ’90, 113–115Google Scholar
  7. [7]
    Eccardt, P.C. et al.: Coupled finite element and network simulation for microsystem components. Proc. MICRO SYSTEM Technologies (MST’96), VDI-Verlag, Potsdam 1996, 145–150Google Scholar
  8. [8]
    Elmqvist, H. et al.: Modelica — A Unified Object-Oriented Language for Physical Systems Modeling. Version 1, September 1997
  9. [9]
    Gerlach, G.; Dötzel, W.: Grundlagen der Mikrosystemtechnik. Hanser-Verlag, München 1997Google Scholar
  10. [10]
    Haase, J.; Schwarz, P.: Modeling and simulation of heterogenous systems. Proc. Workshop on System Design Automation SDA’98, Dresden 1998, 103–110Google Scholar
  11. [11]
    Hofmann, K.: Differential model generation for microsystem components using analog hardware description languages. Dissertation, Darmstadt 1997Google Scholar
  12. [12]
    Isermann, R.: Identifikation dynamischer Systeme. Springer, Berlin 1992Google Scholar
  13. [13]
    Jackson, M. F.; Chua, L. O.: Device modeling by radial basis functions. IEEE Trans. CAS-I 39(1992)1, pp. 19–27Google Scholar
  14. [14]
    Kaltenbacher, M.; Landes, H., Lerch, R.; Lindiger, F.: A finite-element/boundary-element method for the simulation of coupled electrostatic-mechanical systems. J. Phys.III France 7 (1997), pp. 1975–1982Google Scholar
  15. [15]
    Karam, J.M. et al.: Low cost access to MST: manufacturing techniques and related CAD tools. Proc. MICRO SYSTEM Technologies (MST’96), VDI-Verlag, Potsdam 1996, 127–132Google Scholar
  16. [16]
    Kecskemethy, A.; Hiller, M.: An object-oriented approach for an effective formulation of multibody dynamics. 2nd US Natl. Congress Computational Mechanics, Washington, 1993Google Scholar
  17. [17]
    Klein, A.; Schroth, A.; Blochwitz, T.; Gerlach, G.: Two approaches to coupled simulation of complex microsystems. Proc. EUROSIM ‘95, Vienna 1995, 639–644Google Scholar
  18. [18]
    Klein, A.; Gerlach, G.: System modelling of microsystems containing mechanical bending plates using an advanced network description method. Proc. MST’96, Potsdam 1996, 299–304Google Scholar
  19. [19]
    Koenig, H. E.; Blackwell, W. A.: Electromechanical System Theory. McGraw-Hill, 1961Google Scholar
  20. [20]
    Korvink, J.G. et al.: SESES: a comprehensive MEMS modeling system. Proc. MEMS’94, 22–27Google Scholar
  21. [21]
    Lenk, A.: Elektromechanische Systeme (3 vol.). Verlag Technik, Berlin 1971–1973Google Scholar
  22. [22]
    Lorenz, G.; Neul, R.: Network-type modeling of micromachined sensor systems. Proc. MSM98.Google Scholar
  23. [23]
    Mammen, T. et al.: MASE — Werkzeug zur Generierung von Makromodellen fur Mikrosystemkompo-nenten. Proc. 3. Workshop „Methoden und Werkzeuge…“, Frankfurt 1996, 138–145Google Scholar
  24. [24]
    Meinzer, S. et al.: Simulation and design optimization of microsystems based on standard analog simulators and adaptive search techniques. VHDL User Forum Europe, Dresden 1996, 169–180Google Scholar
  25. [25]
    MEMCAD 3.1, see Scholar
  26. [26]
    Nagler, O.; Folkmer, F.: FEM-Simulation piezoresistiver Meßwandler am Beispiel eines mikromecha- nischen Beschleunigungssensors. 13. CAD-FEM User’s Meeting, 1995Google Scholar
  27. [27]
    Neul, R. et al.: A modeling approach to include mechanical microsystem components into system simulation. Proc. Design, Automation & Test Conf. (DATE’98), Paris, 1998, 510–517Google Scholar
  28. [28]
    Nguyen, T. V.: Recursive convolution and discrete time domain simulation of lossy coupled transmission lines. IEEE Transactions on CAD 13 (1994)10, pp. 1301–1305Google Scholar
  29. [29]
    Otter, M.: Objektorientierte Modellierung mechatronischer Systeme am Beispiel geregelter Roboter. Dissertation, Bochum 1994Google Scholar
  30. [30]
    Pelz, G. et al.: MEXEL: Simulation of microsystems in a circuit simulator using automatic electrome-chanical modeling. Proc. MICRO SYSTEM Technologies, VDE-Verlag, Berlin 1994, 651–657Google Scholar
  31. [31]
    Reinschke, K.; Schwarz, P.: Verfahren zur rechnergestützten Analyse linearer Netzwerke. Akademie-Verlag, Berlin 1976MATHGoogle Scholar
  32. [32]
    Romanowicz, B. et al.: Microsystem modeling using VHDL 1076.1. Proc. Microsim’97, 179–188Google Scholar
  33. [33]
    Schrag, G. et al.: Device- and system-level models for micropump simulation. Proc. MicroMat’97, Berlin 1997, 941–944Google Scholar
  34. [34]
    Schulte, S.: Simulation of cross-coupled effects in physical sensors. Proc. MST’94, 833–842Google Scholar
  35. [35]
    Schwarz, P.: Simulation von Mikrosystemen. 2. GME/ITG-Workshop, Ilmenau 1993, 247–256Google Scholar
  36. [36]
    Senturia, S.; Aluru, N. R.; White, J.: Simulating the behavior of MEMS devices: computational methods and needs. IEEE Trans. Computational Science & Engineering, January 1997, 30–54Google Scholar
  37. [37]
    Sigmund, O.: Design of material structures using topology optimization. Diss., Lyngby 1994.Google Scholar
  38. [38]
    Szekely, V.; Rencz, M.: Fast field solver for thermal and electrostatic analysis. Proc. DATE’98, Paris 1998, 518–523Google Scholar
  39. [39]
    Tanner Tools MEMS Pro, Tanner EDA, Pasadena, CA 91107, USA.Google Scholar
  40. [40]
    Tanurhan, Y. et al.: System level specification and simulation for microsystem design. Proc. MICRO SYSTEM Technologies, VDE-Verlag, Berlin 1994, 849–860Google Scholar
  41. [41]
    Tonti, E.: The reason for analogies between physical theories. Appl. Math. Modelling 1 (1976), 37–50CrossRefMathSciNetGoogle Scholar
  42. [42]
    Unbehauen, R.: Netzwerk- und Filtersynthese. R. Oldenbourg, München 1992Google Scholar
  43. [43]
    VHDL-AMS: IEEE DASC 1076.1 WG Documents. See Scholar
  44. [43]
    Voigt, P.; Wachutka, G.: Electro-fluidic microsystem modeling based on Kirchhoffian network theory. Sensor and Actuators A 66 (1998)1–3, pp. 6–14Google Scholar
  45. [45]
    Voll, I; Haase, J.: Rekursives Faltungsmodell fur ein allgemeines Netzwerksimulationsprogramm. Proc. 40. IWK TH Ilmenau, 1995, vol. 3, 269–274Google Scholar
  46. [46]
    Wachutka, G.: Tailored modeling of miniaturized electrothermalmechanical systems using thermodynamic methods. DSC-Vol. 40, Micromechanical Systems, ASME, New York 1992, 183–198Google Scholar
  47. [47]
    Wachutka, G.: Tailored modeling: a way to the ‘virtual microtransducer fab’ ? Sensor and Actuators A 46–47 (1995), pp. 603–612Google Scholar
  48. [48]
    Wünsche, S.; Clauß, C.; Schwarz. P.; Winkler, F.: Electro-thermal circuit simulation using simulator coupling. IEEE Trans. VLSI-5(1997)3, 277–282Google Scholar
  49. [49]
    Wünsche, S.: Ein Beitrag zur Einbeziehung thermisch-elektrischer Wechselwirkungen in den Entwurfsprozeß integrierter Schaltungen. Dissertation TU Chemnitz, 1998Google Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • Peter Schwarz
    • 1
  1. 1.Design Automation Department EAS DresdenFraunhofer Institute for Integrated CircuitsDresdenGermany

Personalised recommendations