Quantum effects in the simulation of conventional devices

  • A. Abramo
  • C. Fiegna
  • P. Casarini
Conference paper


It is widely known that a fundamental role in the evolution of modern solid-state devices is played by scaling theories. The constant increase of the circuit complexity, the reduction of their dimensions and power consumption, in fact, is made possible mainly due to device shrinking. Of course, this progress wouldn’t have happened without the parallel evolution of semiconductor technologies, which, in turn, probably wouldn’t have progressed this much if the performance limits of MOS transistors had been reached sooner. Therefore, it is important to understand and try to predict these limits, possibly to avoid them circumventing their origin, ultimately to delay as much as possible the need of a different technology. To this purpose, from the theoretical side it is important to identify the correct physical frame in which investigations have to be performed, with the aim of bridging the gap between experiments and models, and, in essence, to be confident on the prediction ability of the simulation tools. In this paper we focus our attention on the modeling of quantum effects in MOS transistors, presenting some recent applications concerning quantum effects in MOSFETs.


Threshold Voltage IEEE Electron Device Gate Capacitance Transverse Electric Field Sheet Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Dennard et al., IEEE J. Solid-State Circuits 9, 256 (1974)CrossRefGoogle Scholar
  2. [2]
    G. Baccarani, M. R. Wordeman, R. H. Dennard, IEEE Trans. Electron Devices 31, 452 (1984)CrossRefGoogle Scholar
  3. [3]
    M. Ono et al., IEEE Trans. Electron Devices 42, 1822 (1995)CrossRefGoogle Scholar
  4. [4]
    S. Takagi, A. Toriumi, M. Iwase, H. Tango, IEEE Trans. Electron Devices 41, 2357 (1994)CrossRefGoogle Scholar
  5. [5]
    M. van Dort et al., IEEE Trans. Electron Devices 39, 932 (1992)CrossRefGoogle Scholar
  6. [6]
    S. Hareland et al., IEEE Trans. Electron Devices 43, 90 (1996)CrossRefGoogle Scholar
  7. [7]
    S. Takagi, A. Toriumi, IEEE Trans. Electron Devices 42, 2125 (1995)CrossRefGoogle Scholar
  8. [8]
    K. Krisch, J. Bude, L. Manchanda, IEEE Electron Device Lett. 11, 521 (1997)Google Scholar
  9. [9]
    T. Kuhn, F. Rossi, Phys. Rev. B 46, 7496 (1992)CrossRefGoogle Scholar
  10. [10]
    R. Lake, G. Klimeck, R. Bowen, D. Javanivic, J. Appl. Phys. 81, 7845 (1997)CrossRefGoogle Scholar
  11. [11]
    D. Vasileska, D. Ferry, IEEE Trans. Electron Devices 44, 577 (1997)CrossRefGoogle Scholar
  12. [12]
    W. Frensley, Rev. Mod. Phys. 62, 745 (1990)CrossRefGoogle Scholar
  13. [13]
    P. Bordone et al., Phys. Stat. Sol. B 204, 303 (1997)CrossRefGoogle Scholar
  14. [14]
    M. Fischetti, S. Laux, Phys. Rev. B 48, 2244 (1993)CrossRefGoogle Scholar
  15. [15]
    M. van Dort, P. Woerlee, A. Walker, Solid State Electron. 37, 411 (1994)CrossRefGoogle Scholar
  16. [16]
    A. Spinelli, A. Benvenuti, A. Pacelli, IEDM Tech. Dig. (1996), p. 399CrossRefGoogle Scholar
  17. [17]
    S.-H. Lo, D. Buchanan, Y. Taur, W. Wang, IEEE Electron Device Lett. 18, 209 (1997)CrossRefGoogle Scholar
  18. [18]
    J. Lopez-Villanueva et al, IEEE Trans. Electron Devices 44, 1915 (1997)CrossRefGoogle Scholar
  19. [19]
    C. Bowen et al, IEDM Tech. Dig. (1997), p. 869CrossRefGoogle Scholar
  20. [20]
    M. Fischetti, S. Laux, D. DiMaria, Appl. Surf. Sci. 32, 578 (1989)CrossRefGoogle Scholar
  21. [21]
    S. Jallepalli et al, IEEE Trans. Electron Devices 44, 297 (1997)CrossRefGoogle Scholar
  22. [22]
    G. Strang, G. Fix, An analysis of the finite element method (Prentice-Hall, Englewood Cliffs, N.J., 1973)MATHGoogle Scholar
  23. [23]
    O. Zienkiewicz, The finite element method ( McGraw-Hill, London, 1977 )MATHGoogle Scholar
  24. [24]
    F. Stern, W. Howard, Phys. Rev. 163, 816 (1967)CrossRefGoogle Scholar
  25. [25]
    F. Stern, Phys. Rev. B 5, 4891 (1972)CrossRefGoogle Scholar
  26. [26]
    A. Abramo, J. Bude, F. Venturi, M. Pinto, IEEE Electron Device Lett. 17, 59 (1996)CrossRefGoogle Scholar
  27. [27]
    F. Balestra et al, IEEE Electron Device Lett. 8, 410 (1987)CrossRefGoogle Scholar
  28. [28]
    J. Colinge et al, IEDM Tech. Dig. (1990), p. 595Google Scholar
  29. [29]
    D. Frank, S. Laux, M. Fischetti, IEDM Tech. Dig. (1992), p. 553Google Scholar
  30. [30]
    C. Fiegna et al., IEEE Trans. Electron Devices 41, 941 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • A. Abramo
    • 1
  • C. Fiegna
    • 2
  • P. Casarini
    • 3
  1. 1.DIEGMUniversity of UdineUdineItaly
  2. 2.Dept. of EngineeringUniversity of FerraraFerararaItaly
  3. 3.INFMUniversity of ModenaModenaItaly

Personalised recommendations