A Dopant-Dependent Band Gap Narrowing Model Application for Bipolar Device Simulation

  • V. Palankovski
  • G. Kaiblinger-Grujin
  • H. Kosina
  • S. Selberherr
Conference paper


We present a new band gap narrowing model which considers the semiconductor material and the dopant species for arbitrary finite temperatures. This unified treatment is especially useful for accurate device simulation. As a particular example we studied with our two-dimensional device simulator MINIMOS-NT the electrical behavior of a graded composition Si/SiGe HBT using a hydrodynamic transport model.


Compound Semiconductor Device Simulation Current Gain High Electron Mobility Transistor Dopant Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Slotboom, H. de Graaff, “Measurements of Bandgap Narrowing in Si Bipolar Transistors,” Solid-State Electron., vol. 19, pp. 857–862, 1976CrossRefGoogle Scholar
  2. [2]
    D. Klaassen, J. Slotboom, H. de Graaff, “Unified Apparent Bandgap Narrowing in n- and p-Type Silicon,” Solid-State Electron., vol. 35, no. 2, pp. 125–129, 1992CrossRefGoogle Scholar
  3. [3]
    SILVACO International, Santa Clara, USA, ATLAS, User’s Manual, Edition 2, Mar. 1994Google Scholar
  4. [4]
    ISE Integrated Systems Engineering AG, Zürich, Switzerland, DESSIS-ISE, ISE TCAD Release 5.0, Part 16, Mar. 1998Google Scholar
  5. [5]
    Technology Modeling Associates, Inc., Sunnyvale, California, TMA Medici, Two- Dimensional Device Simulation Program, Version 4-0 User’s Manual, Oct. 1997Google Scholar
  6. [6]
    J. DelAlamo, E. Swirhun, R. Swanson, “Simultaneous measuring of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type Silicon,” in Int. Electron Devices Meeting, pp. 290–293, 1985Google Scholar
  7. [7]
    H. Bennet, C.L.Wilson, “Statistical Comparisons of Data on Band-Gap Narrowing in Heavily Doped Silicon: Electrical and Optical Measurments,” J.Appl.Phys., vol. 55, no. 10, pp. 3582–3587, 1984CrossRefGoogle Scholar
  8. [8]
    E. Schubert, Doping in III-V Semiconductors. Cambridge University Press, 1993CrossRefGoogle Scholar
  9. [9]
    D. Ferry, Semiconductors. New York: Macmillan, 1991Google Scholar
  10. [10]
    G. Kaiblinger-Grujin, H. Kosina, S. Selberherr, “Influence of the Doping Element on the Electron Mobility in n-Silicon,” J.Appl.Phys., vol. 83, no. 6, pp. 3096–3101, 1998CrossRefGoogle Scholar
  11. [11]
    J.-S. Park, A. Neugroschel, F. Lindholm, “Comments on Determination of Bandgap Narrowing from Activation Plots,” IEEE Trans.Electron Devices, vol. 33, no. 7, pp. 1077–1078, 1986CrossRefGoogle Scholar
  12. [12]
    Z. Matutinovic.-Krstelj, V. Venkataraman, E. Prinz, J. Sturm, C.W.Magee, “A Comprehensive Study of Lateral and Vertical Current Transport in Si/Si1-xGex/Si HBT’s,” in Int. Electron Devices Meeting, pp. 87–90, 1993Google Scholar
  13. [13]
    T. Simlinger, H. Brech, T. Grave, S. Selberherr, “Simulation of Submicron Double-Heterojunction High Electron Mobility Transistors with MINIMOS-NT,” IEEE Trans.Electron Devices, vol. 44, no. 5, pp. 700–707, 1997CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • V. Palankovski
    • 1
  • G. Kaiblinger-Grujin
    • 1
  • H. Kosina
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsViennaAustria

Personalised recommendations