An Analysis and a Model of 3D Interaction Methods and Devices for Virtual Reality

  • Charles Albert Wüthrich
Part of the Eurographics book series (EUROGRAPH)


The growing power of computing devices allows the representation of three-dimensional interactive virtual worlds. Interfaces with such a world must profit from our experience in the interaction with the real world. This paper corrects the early taxonomy of interaction devices and actions introduced by Foley for screen based interactive systems by adapting it to real world and to virtual reality systems. Basing on the taxonomy derived, the paper presents a model for a Virtual Reality system based on Systems Theory. The model is capable of including both traditional event-based interaction input devices, as well as continuous input devices. It is strongly device oriented, and allows to model mathematically all currently possible input devices for Virtual Reality. The model has been used for the implementation of a general input device library serving as an abstraction layer to a Virtual Reality system.


Virtual Reality Interactive System Input Function Input Device Virtual Reality System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Ashby. Einfuehrung in die Kybernetik. Suhrkamp, Frankfurt/Main, 1974.MATHGoogle Scholar
  2. 2.
    P. Astheimer. Applied virtual reality - IGD’s VR development environment and applications. In Computers and their Applications ‘86. Proceedings of the International Conference on Computers and their Applications, pages 107–112, San Francisco, 1996.Google Scholar
  3. 3.
    R. M. Baecker and W. Buxton. Readings in Human Computer Interaction: A Multidisciplinary Approach. Morgan Kaufman Publishers, 1987.Google Scholar
  4. 4.
    R. M. Baecker, J. Grudin, W. Buxton, and S. Greenberg. Human Computer Interaction: Toward the Year 2000. Morgan Kaufman Publishers, 1995.Google Scholar
  5. 5.
    A. G. Barto. Discrete and continuous models. International Journal of General Systems, 4:163–177, 1978.MATHCrossRefGoogle Scholar
  6. 6.
    D. Duke, P. Barnard, D. Duce, and J. May. Systematic development of the human interface. In APSEC’95: Second Asia-Pacific Software Engineering Conference,1995. IEEE Society Press, 1995.Google Scholar
  7. 7.
    G. Faconti and D. Duke. Device models. In DSV-IS’96: Eurographics Workshop on Design, Specification and Verification of Interactive Systems,pages 73–91. Springer Verlag, Wien, 1996.Google Scholar
  8. 8.
    J. Foley and V. L. Wallace. The art of graphic man-machine conversation. Proceedings of the IEEE, 62(4):462–471, 1974.CrossRefGoogle Scholar
  9. 9.
    J. D. Foley, V. L. Wallace, and P. Chan. The human factors of computer graphics interaction techniques. IEEE Computer Graphics f4 Applications,4(11):13–48, Nov. 1984.Google Scholar
  10. 10.
    C. Hand. A survey of 3d interacton techniques. Computer Graphics Forum, 16(5):269–282, Dec. 1997.CrossRefGoogle Scholar
  11. 11.
    J. E. Hoperoft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA., 1979.Google Scholar
  12. 12.
    R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System Theory. McGraw-Hill, New York, N.Y., 1969.MATHGoogle Scholar
  13. 13.
    D. Mayhew. Principles and Guidelines of User Interface Design. Prentice-Hall, Englewood Cliffs, NJ, 1990.Google Scholar
  14. 14.
    M. Meister, C. Wüthrich, and J. Springer. VOODIE: An object oriented distributed interactive environment. Research Report MSRR-98–002, Faculty of Media, Bauhaus-University Weimar, Weimar, 1998.Google Scholar
  15. 15.
    D. A. Norman. The Psychology of Everyday Things. Basic Books (Harper Collins), 1988.Google Scholar
  16. 16.
    L. Padulo and M. A. Arbib. System Theory. Saunders, Philadelphia, PA., 1974.MATHGoogle Scholar
  17. 17.
    S. Rezzonico, Z. Huang, R. Boulic, N. M. Thalmann, and D. Thalmann. Consistent grasping interactions with virtual actors based on the multi-sensor hand model. In M. Göbel, editor, Virtual Environments ‘85, pages 107–118. Springer Verlag, Wien, 1995.Google Scholar
  18. 18.
    G. Ropohl. Eine Systemtheorie der Technik. Hanser, Wien, 1974.Google Scholar
  19. 19.
    G. Salvendy, editor. Handbook of Human Factors. J. Wiley and Sons, New York, 1987.Google Scholar
  20. 20.
    R. M. Sanso and D. Thalmann. A hand control and automatic grasping system for synthetic actors. Computer Graphics Forum, 13(3):C167–C177, 1994.CrossRefGoogle Scholar
  21. 21.
    B. Shneiderman. Direct manipulation: A step beyond programming languages. IEEE Computer, 16(8):57–69, Aug. 1983.Google Scholar
  22. 22.
    B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley, Reading, MA, 1986.Google Scholar
  23. 23.
    D. Smith, C. Irby, R. Kemball, W. Verplank, and E. Harslem. Designing the Star user interface. Byte, 7(4):242–282, Apr. 1982.Google Scholar
  24. 24.
    M. Stark, M. Köhler, and P. Zyklop. ZYKLOP: Ein System für den gestenbasierten Dialog mit Anwendungsprogrammen. In D. W. Fellner, editor, MVD’95: Modeling - Virtual Worlds - Distributed Graphics: Beiträge zum Internationalen Workshop MVD ‘85, 27–28. November 1995, Bad Honnef, pages 69–82. Infix, 1995.Google Scholar
  25. 25.
    M. Syrbe. Über die Notwendigkeit einer Systemtheorie in der Wissenschaftsdisziplin Informatik. Informatik Spektrum, 18:222–227, 1995.Google Scholar
  26. 26.
    C. P. Thacker, E. M. Craig, B. W. Mapson, R. Sproull, and D. R. Boggs. Alto: A personal computer. In D. Siewiorek, G. Bell, and A. M. Newel, editors, Computer Structures: Readings and Examples. McGraw-Hill New York, N.Y. second edition, 1981.Google Scholar
  27. 27.
    V. Turchin. The Phenomenon of Science. Columbia University Press, New York, 1977.Google Scholar
  28. 28.
    L. von Bertalanffy. General System Theory. Foundations, Development, Applications. George Braziller, New York, 1968.Google Scholar
  29. 29.
    G. Wesche, J. Wind, W. Heiden, F. Hasenbrink, and M. Gbel. Engineering on the responsive workbench. In Proceedings of the Eighth Eurographics Workshop On Visualization in Scientific Computing, pages 41–48. Laboratoire d’Informatique du Littoral, Boulogne-sur-Mer, France, 1997.Google Scholar
  30. 30.
    M. Wlotka. Interacting with virtual reality. In J. Rix, E. Haas, and J. Texeira, editors, Virtual Prototyping - Virtual Environments and the Product Development Process. Chapman & Hall, 1995.Google Scholar
  31. 31.
    M. Wlotka and E. Greenfield. The virtual tricoder. Technical Report CS-95–05, Department of Computer Science, Brown University, Providence, RI, 1995.Google Scholar
  32. 32.
    E.-G. Woschni. Informationstechnik. VEB Verlag Technik, Berlin, 1974.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Charles Albert Wüthrich
    • 1
  1. 1.CoGVis/MMC, Department of MediaBauhaus-University WeimarWeimarGermany

Personalised recommendations