Rendering Inhomogeneous Surfaces with Radiosity

  • L. Mostefaoui
  • J. M. Dischler
  • D. Ghazanfarpour
Part of the Eurographics book series (EUROGRAPH)


Natural surfaces are often complex: they nearly always exhibit small scale imperfections such as dirt, dust, cracks, etc., as well as large scale structural elements, as for wickerwork, brick walls, textiles, pebbles, etc., that are generally too complex to be modeled explicitly. In this paper, we propose a new multi-scale periodic texture model adapted to the efficient simulation of the previously mentioned features. This new model combines notions of virtual ray tracing (that we have recently introduced) with bi-directional texture function, while it also considers self-shadowing and inter-reflections at texture scale. In a second step, the texture model is integrated into hierarchical radiosity with clustering. Therefore, an extension of radiosity techniques, currently limited to texture maps, bump maps and general (homogeneous) reflectance functions, is proposed. The final rendering consists of applying a second ray tracing pass, based on a gathering methodology adapted to the model. The method provides images at a significant lower computation and memory consumption cost than with “explicit” models in the case of periodic features (wickerwork, grids, pavements, etc.) for a similar visual quality.


Computer Graphic Texture Model Inhomogeneous Surface Reflectance Function Global Illumination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blinn J.F., “Simulation of wrinkled surfaces”, Computer Graphics 12, 1978, pp. 286–292.CrossRefGoogle Scholar
  2. 2.
    K. Perlin, ”An Image Synthesizer”, Computer Graphics 19(3), 1985, pp. 287–296.CrossRefGoogle Scholar
  3. 3.
    Peachey D., ”Solid Texturing on complex Surfaces”, Computer Graphics 19(3), 1985, pp. 279–286.CrossRefGoogle Scholar
  4. 4.
    R.L. Cook, ”Shade Trees”, Computer Graphics 18 (Siggraph’84), pp. 223–231, 1984.CrossRefGoogle Scholar
  5. 5.
    K. Perlin and E.M. Hoffert, ”Hypertexture”, Computer Graphics 23(3), pp. 253–262, 1989.CrossRefGoogle Scholar
  6. 6.
    J.T. Kajiya, and T.L. Kay, ”Rendering fur with Three Dimensional Textures”, Computer Graphics 23(3) (Siggraph’89), pp. 271–280, 1989.CrossRefGoogle Scholar
  7. 7.
    M.F. Cohen, S.E. Chen, D.S. Immel and P.J. Brock, ”An Efficient Radiosity Approach for Realistic Image Synthesis”, IEEE CGA 6(3), pp. 26–35, 1986.CrossRefGoogle Scholar
  8. 8.
    R. Gershbein, P. Schroeder and P. Hanrahan, ”Texture and Radiosity: Controlling Emission and Reflection with Texture Maps”, Computer Graphics (Siggraph’94), pp. 51–58, 1994.Google Scholar
  9. 9.
    H. Chen, and E-H. Wu, ”An Efficient Radiosity Solution for Bump Texture Generation”, Computer Graphics 24(4)(Siggraph’90), pp. 125–134, 1990.CrossRefGoogle Scholar
  10. 10.
    F.X. Sillion, J.R. Arvo, S.H. Westin and D.P. Greenberg,”A Global Illumination Solution for General Reflectance Distributions”, Computer Graphics 25(4), pp. 187–196, 1991.CrossRefGoogle Scholar
  11. 11.
    F.X. Sillion, ”Clustering and Volume Scattering for Hierarchical Radiosity Calculation”, Fifth EGWR, June 1994.Google Scholar
  12. 12.
    B. Smits, J. Arvo and D.P. Greenberg, ”A Clustering Algorithm for Radiosity in Complex Environments”, Computer Graphics (Siggraph’94), pp. 435–442, 1994.Google Scholar
  13. 13.
    M. Pharr, C. Kolb, R. Gershbein and P. Hanrahan, ”Rendering Complex Scenes with Memory-Coherent Ray Tracing”, Computer Graphics (Siggraph’97), 1997.Google Scholar
  14. 14.
    J.M. Dischler, L. Mostefaoui and D. Ghazanfarpour, ”Radiosity Including Complex Surfaces and Geometric Textures Using Solid Irradiance and Virtual Surfaces”, Computers and Graphics 23(4), 1999 (to appear).Google Scholar
  15. 15.
    Dana K.J., Nayar S.K., van Ginneken B. and Koenderink J.J., ”Reflectance and Texture of Real-World Surfaces”, IEEE Conf. on Comp. Vision and Pattern Recognition, 1997.Google Scholar
  16. 16.
    L. Williams, ”Pyramidal parametrics”, Computer Graphics 17(3), pp. 1–11, 1983.CrossRefGoogle Scholar
  17. 17.
    T. Noma, ”Bridging between surface rendering and volume rendering for multi-resolution display”, Proc. EGWR, pp. 31–40, 1995.Google Scholar
  18. 18.
    F. Neyret, ”A general and multiscale method for volumetric textures”, Proc. Graphics Interface’ 95, pp. 83–91, 1995.Google Scholar
  19. 19.
    J.M. Dischler, ”Efficiently Rendering Macro-geometric Surface Structure with Bi-directional Texture Functions”, Proc. EGWR, pp. 169–180, 1998.Google Scholar
  20. 20.
    F.X. Sillion, G. Drettakis and C. Soler, ”A Clustering Algorithm for Radiance Calculation in General Environments”, Proc. EGWR, pp. 196–205, 1995.Google Scholar
  21. 21.
    P.H. Christensen, D. Lischinski, E.J. Stollnitz and D.H. Salesin, ”Clustering for Glossy Global Illumination”, ACM TOG 16(1), pp. 3–83, January 1997.Google Scholar
  22. 22.
    E. P. Lafortune and Y. D. Willems, ”A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing”, Proc. of 6th EGWR, 1995.Google Scholar
  23. 23.
    H. W. Jensen and N. J. Christensen, ”Photon Maps in Bi-directional Monte Carlo Ray Tracing of Complex Objects”, Computers and Graphics 19(2), pp. 215–224, 1995.CrossRefGoogle Scholar
  24. 24.
    J.P. Ewins, M.D. Waller, M. White and P.F. Lister, ”MIP-map Level Selection for Texture Mapping”, IEEE TVCG 4(4), pp. 317–329, 1998.Google Scholar
  25. 25.
    Westin S. H., Arvo J. R. and Torrance K. E., ”Predicting Reflectance Functions from Complex Surfaces”, Computer Graphics 26(2), pp. 255–263, 1992.CrossRefGoogle Scholar
  26. 26.
    Kajiya J., ”The Rendering Equation”, Computer Graphics 20(4), pp. 143–150, 1986.CrossRefGoogle Scholar
  27. 27.
    P.M. Deville and J.C. Paul, ”Modeling the spatial Energy Distribution of Complex Light Sources for Lighting Engineering”, Proc. of EGWR, pp. 147–159, 1995.Google Scholar
  28. 28.
    M.C. Reichert, ”A Two-pass Radiosity Method Driven by Lights and Viewer Position”, Master’s thesis, Program of Computer Graphics, Cornell University, 1992.Google Scholar
  29. 29.
    Max N., ”Horizon mapping: shadows for bump-mapped surfaces”, The Visual Computer 4, 1988, pp. 109–117.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • L. Mostefaoui
    • 1
  • J. M. Dischler
    • 1
  • D. Ghazanfarpour
    • 1
  1. 1.Laboratoire MSI E.N.S.I.L.Université de LimogesLimoges CedexFrance

Personalised recommendations