Skip to main content

Rendering Inhomogeneous Surfaces with Radiosity

  • Conference paper
  • First Online:

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

Natural surfaces are often complex: they nearly always exhibit small scale imperfections such as dirt, dust, cracks, etc., as well as large scale structural elements, as for wickerwork, brick walls, textiles, pebbles, etc., that are generally too complex to be modeled explicitly. In this paper, we propose a new multi-scale periodic texture model adapted to the efficient simulation of the previously mentioned features. This new model combines notions of virtual ray tracing (that we have recently introduced) with bi-directional texture function, while it also considers self-shadowing and inter-reflections at texture scale. In a second step, the texture model is integrated into hierarchical radiosity with clustering. Therefore, an extension of radiosity techniques, currently limited to texture maps, bump maps and general (homogeneous) reflectance functions, is proposed. The final rendering consists of applying a second ray tracing pass, based on a gathering methodology adapted to the model. The method provides images at a significant lower computation and memory consumption cost than with “explicit” models in the case of periodic features (wickerwork, grids, pavements, etc.) for a similar visual quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinn J.F., “Simulation of wrinkled surfaces”, Computer Graphics 12, 1978, pp. 286–292.

    Article  Google Scholar 

  2. K. Perlin, ”An Image Synthesizer”, Computer Graphics 19(3), 1985, pp. 287–296.

    Article  Google Scholar 

  3. Peachey D., ”Solid Texturing on complex Surfaces”, Computer Graphics 19(3), 1985, pp. 279–286.

    Article  Google Scholar 

  4. R.L. Cook, ”Shade Trees”, Computer Graphics 18 (Siggraph’84), pp. 223–231, 1984.

    Article  Google Scholar 

  5. K. Perlin and E.M. Hoffert, ”Hypertexture”, Computer Graphics 23(3), pp. 253–262, 1989.

    Article  Google Scholar 

  6. J.T. Kajiya, and T.L. Kay, ”Rendering fur with Three Dimensional Textures”, Computer Graphics 23(3) (Siggraph’89), pp. 271–280, 1989.

    Article  Google Scholar 

  7. M.F. Cohen, S.E. Chen, D.S. Immel and P.J. Brock, ”An Efficient Radiosity Approach for Realistic Image Synthesis”, IEEE CGA 6(3), pp. 26–35, 1986.

    Google Scholar 

  8. R. Gershbein, P. Schroeder and P. Hanrahan, ”Texture and Radiosity: Controlling Emission and Reflection with Texture Maps”, Computer Graphics (Siggraph’94), pp. 51–58, 1994.

    Google Scholar 

  9. H. Chen, and E-H. Wu, ”An Efficient Radiosity Solution for Bump Texture Generation”, Computer Graphics 24(4)(Siggraph’90), pp. 125–134, 1990.

    Article  Google Scholar 

  10. F.X. Sillion, J.R. Arvo, S.H. Westin and D.P. Greenberg,”A Global Illumination Solution for General Reflectance Distributions”, Computer Graphics 25(4), pp. 187–196, 1991.

    Article  Google Scholar 

  11. F.X. Sillion, ”Clustering and Volume Scattering for Hierarchical Radiosity Calculation”, Fifth EGWR, June 1994.

    Google Scholar 

  12. B. Smits, J. Arvo and D.P. Greenberg, ”A Clustering Algorithm for Radiosity in Complex Environments”, Computer Graphics (Siggraph’94), pp. 435–442, 1994.

    Google Scholar 

  13. M. Pharr, C. Kolb, R. Gershbein and P. Hanrahan, ”Rendering Complex Scenes with Memory-Coherent Ray Tracing”, Computer Graphics (Siggraph’97), 1997.

    Google Scholar 

  14. J.M. Dischler, L. Mostefaoui and D. Ghazanfarpour, ”Radiosity Including Complex Surfaces and Geometric Textures Using Solid Irradiance and Virtual Surfaces”, Computers and Graphics 23(4), 1999 (to appear).

    Google Scholar 

  15. Dana K.J., Nayar S.K., van Ginneken B. and Koenderink J.J., ”Reflectance and Texture of Real-World Surfaces”, IEEE Conf. on Comp. Vision and Pattern Recognition, 1997.

    Google Scholar 

  16. L. Williams, ”Pyramidal parametrics”, Computer Graphics 17(3), pp. 1–11, 1983.

    Article  Google Scholar 

  17. T. Noma, ”Bridging between surface rendering and volume rendering for multi-resolution display”, Proc. EGWR, pp. 31–40, 1995.

    Google Scholar 

  18. F. Neyret, ”A general and multiscale method for volumetric textures”, Proc. Graphics Interface’ 95, pp. 83–91, 1995.

    Google Scholar 

  19. J.M. Dischler, ”Efficiently Rendering Macro-geometric Surface Structure with Bi-directional Texture Functions”, Proc. EGWR, pp. 169–180, 1998.

    Google Scholar 

  20. F.X. Sillion, G. Drettakis and C. Soler, ”A Clustering Algorithm for Radiance Calculation in General Environments”, Proc. EGWR, pp. 196–205, 1995.

    Google Scholar 

  21. P.H. Christensen, D. Lischinski, E.J. Stollnitz and D.H. Salesin, ”Clustering for Glossy Global Illumination”, ACM TOG 16(1), pp. 3–83, January 1997.

    Article  Google Scholar 

  22. E. P. Lafortune and Y. D. Willems, ”A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing”, Proc. of 6th EGWR, 1995.

    Google Scholar 

  23. H. W. Jensen and N. J. Christensen, ”Photon Maps in Bi-directional Monte Carlo Ray Tracing of Complex Objects”, Computers and Graphics 19(2), pp. 215–224, 1995.

    Article  Google Scholar 

  24. J.P. Ewins, M.D. Waller, M. White and P.F. Lister, ”MIP-map Level Selection for Texture Mapping”, IEEE TVCG 4(4), pp. 317–329, 1998.

    Google Scholar 

  25. Westin S. H., Arvo J. R. and Torrance K. E., ”Predicting Reflectance Functions from Complex Surfaces”, Computer Graphics 26(2), pp. 255–263, 1992.

    Article  Google Scholar 

  26. Kajiya J., ”The Rendering Equation”, Computer Graphics 20(4), pp. 143–150, 1986.

    Article  Google Scholar 

  27. P.M. Deville and J.C. Paul, ”Modeling the spatial Energy Distribution of Complex Light Sources for Lighting Engineering”, Proc. of EGWR, pp. 147–159, 1995.

    Google Scholar 

  28. M.C. Reichert, ”A Two-pass Radiosity Method Driven by Lights and Viewer Position”, Master’s thesis, Program of Computer Graphics, Cornell University, 1992.

    Google Scholar 

  29. Max N., ”Horizon mapping: shadows for bump-mapped surfaces”, The Visual Computer 4, 1988, pp. 109–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag/Wien

About this paper

Cite this paper

Mostefaoui, L., Dischler, J.M., Ghazanfarpour, D. (1999). Rendering Inhomogeneous Surfaces with Radiosity. In: Lischinski, D., Larson, G.W. (eds) Rendering Techniques’ 99. EGSR 1999. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6809-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6809-7_25

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83382-7

  • Online ISBN: 978-3-7091-6809-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics