Perceptually-informed accelerated rendering of high quality walkthrough sequences

  • Karol Myszkowski
  • Przemyslaw Rokita
  • Takehiro Tawara
Part of the Eurographics book series (EUROGRAPH)


In this paper, we consider accelerated rendering of walkthrough animation sequences using combination of ray tracing and Image-Based Rendering (IBR) techniques. Our goal is to derive as many pixels as possible using inexpensive IBR techniques without affecting the animation quality. A perception-based spatio-temporal Animation Quality Metric (AQM) is used to automatically guide such a hybrid rendering. The Pixel Flow (PF) obtained as a by-product of the IBR computation is an integral part of the AQM. The final animation quality is enhanced by an efficient spatio-temporal antialiasing, which utilize the PF to perform a motion-compensated filtering.


Just Noticeable Difference Contrast Sensitivity Function Animation Quality Video Quality Metrics Animated Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    www. u-aizu. ac. jp/labs/csel/aqm. The Web page accompanying to this paper.Google Scholar
  2. 2.
    S.J. Adelson and L.F. Hodges. Generating exact ray-traced animation frames by reprojection. IEEE Computer Graphics & Applications, 15(3):43–52, 1995.CrossRefGoogle Scholar
  3. 3.
    C. Chevrier. A view interpolation technique taking into account diffuse and specular inter-reflections. The Visual Computer, 13(7):330–341, 1997.MATHCrossRefGoogle Scholar
  4. 4.
    S. Daly. The Visible Differences Predictor: An algorithm for the assessment of image fidelity. In A.B. Watson, editor, Digital Image and Human Vision, pages 179–206. MIT Press, 1993.Google Scholar
  5. 5.
    S. Daly. Engineering observations from spatiovelocity and spatiotemporal visual models. In Human Vision and Electronic Imaging III, pages 180–191. SPIE Vol. 3299, 1998.Google Scholar
  6. 6.
    S. Daly. personal communication. 1999.Google Scholar
  7. 7.
    L. Darsa, B.C. Silva, and A. Varshney. Navigating static environments using image-space simplification and morphing. In 1997 Symposium on Interactive 3D Graphics, pages 25–34. ACM SIGGRAPH, 1997.Google Scholar
  8. 8.
    C.J. van den Branden Lambrecht. Perceptual models and architectures for video coding applications. Ph.D. thesis, 1996.Google Scholar
  9. 9.
    C.J. van den Branden Lambrecht and O. Verscheure. Perceptual quality measure using a spatio-temporal model of the human visual system. pages 450–461. SPIE Vol. 2668, 1996.Google Scholar
  10. 10.
    M.P. Eckert and Buchsbaum G. The significance of eye movements and image acceleration for coding television image sequences. In A.B. Watson, editor, Digital Image and Human Vision, pages 89–98. Cambridge, MA: MIT Press, 1993.Google Scholar
  11. 11.
    R. Eriksson, B. Andren, and K. Brunnstrom. Modelling of perception of digital images: a performance study. pages 88–97. Proceedings of SPIE Vol. 3299.Google Scholar
  12. 12.
    R.C. Gonzalez and R.E. Woods. Digital image processing. Addison-Wesley, 1993.Google Scholar
  13. 13.
    S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen. The lumigraph. In SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 43–54, 1996.Google Scholar
  14. 14.
    B.K. Guenter, H.C. Yun, and R.M. Mersereau. Motion compensated compression of computer animation frames. In SIGGRAPH’ 93 Proceedings, volume 27, pages 297–304, 1993.Google Scholar
  15. 15.
    Michael Halle. Multiple viewpoint rendering. In SIGGRAPH 98 Conference Proceedings, Annual Conference Series, pages 243–254, 1998.Google Scholar
  16. 16.
    D.H. Kelly. Motion and Vision 2. Stabilized spatio-temporal threshold surface. Journal of the Optical Society of America, 69(10): 1340–1349, 1979.CrossRefGoogle Scholar
  17. 17.
    M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 31–42, 1996.Google Scholar
  18. 18.
    D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse synthetic scenes. In Proceedings of Eurographics Rendering Workshop’ 98, pages 301–314, 1998.Google Scholar
  19. 19.
    J. Lubin. A human vision model for objective picture quality measurements. In Conference Publication No. 447, pages 498–503. IEE International Broadcasting Convention, 1997.Google Scholar
  20. 20.
    W.R. Mark, L. McMillan, and G. Bishop. Post-rendering 3D warping. In 1997 Symposium on Interactive 3D Graphics, pages 7–16. ACM SIGGRAPH, 1997.Google Scholar
  21. 21.
    L. McMillan. An Image-Based Approach to 3D Computer Graphics. Ph.D. thesis, 1997.Google Scholar
  22. 22.
    G. Miller, S. Rubin, and D. Poncelen. Lazy decompression of surface light fields for pre-computed global illumination. In Rendering Techniques’ 98 (Proceedings of Eurographics Rendering Workshop’ 98), pages 281–292, 1998.Google Scholar
  23. 23.
    J. Nimeroff, J. Dorsey, and H. Rushmeier. Implementation and analysis of an image-based global illumination framework for animated environments. IEEE Transactions on Visualization and Computer Graphics, 2(4):283–298, 1996.CrossRefGoogle Scholar
  24. 24.
    W. Osberger, A.J. Maeder, and N. Bergmann. A perceptually based quantization technique for MPEG encoding. pages 148–159. Proceedings of SPIE Vol. 3299, 1998.Google Scholar
  25. 25.
    J.W. Shade, S.J. Gortler, L. He, and R. Szeliski. Layered depth images. In SIGGRAPH 98 Conference Proceedings, pages 231–242, 1998.Google Scholar
  26. 26.
    M. Shinya. Spatial anti-aliasing for animation sequences with spatio-temporal filtering. In Computer Graphics (SIGGRAPH’ 93 Proceedings), volume 27, pages 289–296, 1993.Google Scholar
  27. 27.
    A. Murat Tekalp. Digital video Processing. Prentice Hall, 1995.Google Scholar
  28. 28.
    A.B. Watson. Temporal sensitivity. In Handbook of Perception and Human Performance, Chapter 6. John Wiley, New York, 1986.Google Scholar
  29. 29.
    A.B. Watson. Toward a perceptual video quality metric. In Human Vision and Electronic Imaging III, pages 139–147. Proceedings of SPIE Vol. 3299, 1998.Google Scholar
  30. 30.
    J.H.D.M. Westerink and C. Teunissen. Perceived sharpness in moving images. pages 78–87. Proceedings of SPIE Vol. 1249, 1990.Google Scholar
  31. 31.
    E. Zeghers, S. Carre, and K. Bouatouch. Faster image rendering in animation through motion compensated interpolation. In Graphics, Design and Visualization, pages 49–62, 1993.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Karol Myszkowski
    • 1
  • Przemyslaw Rokita
    • 1
  • Takehiro Tawara
    • 1
  1. 1.University of AizuAizu WakamatsuJapan

Personalised recommendations