Image-Based BRDF Measurement Including Human Skin

  • Stephen R. Marschner
  • Stephen H. Westin
  • Eric P. F. Lafortune
  • Kenneth E. Torrance
  • Donald P. Greenberg
Part of the Eurographics book series (EUROGRAPH)


We present a new image-based process for measuring the bidirectional reflectance of homogeneous surfaces rapidly, completely, and accurately. For simple sample shapes (spheres and cylinders) the method requires only a digital camera and a stable light source. Adding a 3D scanner allows a wide class of curved near-convex objects to be measured. With measurements for a variety of materials from paints to human skin, we demonstrate the new method’y to achieve high resolution and accuracy over a large domain of illumination and reflection directions. We verify our measurements by tests of internal consistency and by comparison against measurements made using a gonioreflectomter.


Computer Graphic Source Position Bundle Adjustment Bidirectional Reflectance Distribution Function Radiometric Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Standard practice for angle resolved optical scatter measurements on specular or diffuse surfaces. ASTM Standard E 1392–1396.Google Scholar
  2. 2.
    A. Cader and J. Jankowski. Reflection of ultraviolet radiation from different skin types. Health Physics, 74(2): 169–172, February 1998.CrossRefGoogle Scholar
  3. 3.
    Raymond J. Castonguay. New generation high-speed high-resolution hemispherical scat-terometer. In John C. Stover, editor, SPIE Proceedings, volume 1995, pages 152–165, July 1993.Google Scholar
  4. 4.
    J. H. Chandler and C. J. Padfield. Automated digital photogrammetry on a shoestring. Pho-togrammetric Record, 15(88):545–559, 1996.CrossRefGoogle Scholar
  5. 5.
    J. Fan and I. Gijbels. Local Polynomial Modeling and Its Applications. Chapman and Hall, London, 1996.Google Scholar
  6. 6.
    Sing-Choong Foo. A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation. Master’s thesis, Cornell University, 1997.Google Scholar
  7. 7.
    C. S. Fraser, M. R. Shortis, and G. Ganci. Multi-sensor system self-calibration. In Video-metrics IV, pages 2–18. SPIE, October 1995.Google Scholar
  8. 8.
    A. Glassner, editor. An Introduction to Ray Tracing. Academic Press, London, 1989.zbMATHGoogle Scholar
  9. 9.
    Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumi-graph. In Computer Graphics (SIGGRAPH’ 96 Proceedings), pages 43–54, August 1996.Google Scholar
  10. 10.
    Anat Grynberg and Greg Ward. A new tool for reflectometry. Monograph 161, Lawrence Berkeley Laboratory, July 1990.Google Scholar
  11. 11.
    Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces due to subsurface scattering. In Computer Graphics (SIGGRAPH’ 93 Proceedings), pages 165–174, August 1993.Google Scholar
  12. 12.
    Ziad R. Hatab, John R. McNeil, and S. Sohail H. Naqvi. Sixteen-megabit dynamic random access memory trench depth characterization using two-dimensional diffraction analysis. Journal of Vacuum Science and Technology B, 13(2): 174–181, March/April 1995.CrossRefGoogle Scholar
  13. 13.
    Xiao D. He, Kenneth E. Torrance, Francois X. Sillion, and Donald P. Greenberg. A comprehensive physical model for light reflection. Computer Graphics (SIGGRAPH’ 91 Proceedings), 25(4): 175–186, July 1991.CrossRefGoogle Scholar
  14. 14.
    Katsushi Ikeuchi and Kosuke Sato. Determining reflectance properties of an object using range and brightness image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11):1139–1153, 1991.CrossRefGoogle Scholar
  15. 15.
    Konrad F. Karner, Heinz Mayer, and Michael Gervautz. An image based measurement system for anisotropic reflection. Computer Graphics Forum (Eurographics’ 96 Proceedings), 15(3): 119–128, August 1996.CrossRefGoogle Scholar
  16. 16.
    Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P. Greenberg. Non-linear approximation of reflectance functions. In Computer Graphics (SIGGRAPH’ 97 Proceedings), pages 117–126, August 1997.Google Scholar
  17. 17.
    Rong Lu, Jan J. Koenderink, and Astrid M. L. Kappers. Optical properties (bidirectional reflectance distribution functions) of velvet. Applied Optics, 37(25):5974–5984, September 1998.CrossRefGoogle Scholar
  18. 18.
    Stephen R. Marschner. Inverse Rendering for Computer Graphics. PhD thesis, Cornell University, 1998.Google Scholar
  19. 19.
    F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometric considerations and nomenclature for reflectance. Monograph 160, National Bureau of Standards (US), October 1977.Google Scholar
  20. 20.
    Yoichi Sato, Mark D. Wheeler, and Katsushi Ikeuchi. Object shape and reflectance modeling from observation. In Computer Graphics (SIGGRAPH’ 97 Proceedings), pages 379–387, August 1997.Google Scholar
  21. 21.
    K. E. Torrance and E. M. Sparrow. Off-specular peaks in the directional distribution of reflected thermal radiation. Transactions of the ASME, 88:223–230, May 1966.Google Scholar
  22. 22.
    K. E. Torrance and E. M. Sparrow. Theory for off-specular reflection from roughened surfaces. Journal of Optical Society of America, 57(9): 1105–1114, 1967.CrossRefGoogle Scholar
  23. 23.
    Gregory J. Ward. Measuring and modeling anisotropic reflection. Computer Graphics (SIGGRAPH’ 92 Proceedings), 26(2):265–272, July 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Stephen R. Marschner
    • 1
  • Stephen H. Westin
    • 1
  • Eric P. F. Lafortune
    • 1
  • Kenneth E. Torrance
    • 1
  • Donald P. Greenberg
    • 1
  1. 1.Program of Computer GraphicsCornell UniversityUSA

Personalised recommendations