New Approaches for Particle Tracing on Sparse Grids

  • Christian Teitzel
  • Thomas Ertl
Part of the Eurographics book series (EUROGRAPH)


Flow visualization tools based on particle methods continue to be an important utility of flow simulation. Additionally, sparse grids are of increasing interest in numerical simulations. In [14] we presented the advantages of particle tracing on uniform sparse grids. Here we present and compare two different approaches to accelerate particle tracing on sparse grids. Furthermore, a new approach is presented in order to perform particle tracing on curvilinear sparse grids. The method for curvilinear sparse grids consists of a modified Stencil Walk algorithm and especially adapted routines to compute, store, and handle the required Jacobians. The accelerating approaches are on the on hand an adaptive method, where an error criterion is used to skip basis functions with minor contribution coefficients, and on the other hand the so-called combination technique, which uses a specific selection of small full grids to emulate sparse grids.


Particle Trace Sparse Grid Interpolation Process Combination Technique Tree Traversal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. I. Babenko. Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Mathematics,1:672–675, 1960. Translation of Doklady Akademii Nauk SSSR.Google Scholar
  2. 2.
    H.-J. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. PhD thesis, TU Munich, 1992.Google Scholar
  3. 3.
    H.-J. Bungartz and T. Dornseifer. Sparse Grids: Recent Developments for Elliptic Partial Differential Equations. In Multigrid Methods V, Lecture Notes in Computational Science and Engineering. Springer-Verlag, 1998.Google Scholar
  4. 4.
    P. Buning. Numerical Algorithms in CFD Post-Processing. In Computer Graphics and Flow Visualization in Computational Fluid Dynamics,number 1989–07 in Lecture Series, Brussels, Belgium, 1989. Von Karman Institute for Fluid Dynamics.Google Scholar
  5. 5.
    M. Griebel, W. Huber, U. Rüde, and T. Störtkuhl. The combination technique for parallel sparse-grid-preconditioning or -solution of PDE’s on multiprocessor machines and workstation networks. In L. Bougé, M. Cosnard, Y. Robert, and D. Trystram, editors, Second Joint International Conference on Vector and Parallel Processing, pages 217–228, Berlin, 1992. CONPAR/VAPP, Springer-Verlag.Google Scholar
  6. 6.
    M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In P. de Groen and R. Beauwens, editors, International Symposium on Iterative Methods in Linear Algebra, pages 263–281, Amsterdam, 1992. IMACS, Elsevier.Google Scholar
  7. 7.
    M. Griebel and V. Thurner. The efficient solution of fluid dynamics problems by the combination technique. Int. J. Numer. Methods Heat Fluid Flow, 5: 251–269, 1995.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    R. Grosso, M. Schulz, J. Kraheberger, and T. Ertl. Flow Visualization for Multiblock Multigrid Simulations. In P. Slavick and J. J. van Wijk, editors, Virtual Environments and Scientific Visualization ‘86, Heidelberg, 1996. Springer-Verlag. Proceedings of the Eurographics Workshop in Prague, Czech Republic.Google Scholar
  9. 9.
    N. Heußer and M. Rumpf. Efficient Visualization of Data on Sparse Grids. In H.-C. Hege and K. Polthier, editors, Mathematical Visualization, pages 31–44, Heidelberg, 1998. Springer-Verlag.Google Scholar
  10. 10.
    D. N. Kenwright and D. A. Lane. Optimization of Time-Dependent Particle Tracing Using Tetrahedral decomposition. In G. M. Nielson and Silver D., editors, Visualization ‘85, pages 321–328, Los Alamitos, CA, 1995. IEEE Computer Society, IEEE Computer Society Press.Google Scholar
  11. 11.
    A. Sadarjoen, T. van Walsum, A. J. S. Hin, and F. H. Post. Particle Tracing Algorithms for 3D Curvilinear Grids. In Fifth Eurographics Workshop on Visualization in Scientific Computing, 1994.Google Scholar
  12. 12.
    S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Mathematics,4:240–243, 1963. Translation of Doklady Akademii Nauk SSSR.Google Scholar
  13. 13.
    C. Teitzel, R. Grosso, and T. Ertl. Efficient and Reliable Integration Methods for Particle Tracing in Unsteady Flows on Discrete Meshes. In W. Lefer and M. Grave, editors, Visualization in Scientific Computing ‘87, pages 31–41, Wien, April 1997. Springer-Verlag. Proceedings of the Eurographics Workshop in Boulogne-sur-Mer, France.CrossRefGoogle Scholar
  14. 14.
    C. Teitzel, R. Grosso, and T. Ertl. Particle Tracing on Sparse Grids. In D. Bartz, editor, Visualization in Scientific Computing ‘88, pages 81–90, Wien, April 1998. Springer-Verlag. Proceedings of the Eurographics Workshop in Blaubeuren, Germany.Google Scholar
  15. 15.
    C. Zenger. Sparse grids. In Parallel Algorithms for Partial Differential Equations: Proceedings of the Sixth GAMM-Seminar, Kiel, 1990.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Christian Teitzel
    • 1
  • Thomas Ertl
    • 1
  1. 1.Computer Graphics GroupUniversity of ErlangenErlangenGermany

Personalised recommendations