A Comparison of Error Indicators for Multilevel Visualization on Nested Grids

  • Thomas Gerstner
  • Martin Rumpf
  • Ulrich Weikard
Part of the Eurographics book series (EUROGRAPH)


Multiresolution visualization methods have recently become an indispensable ingredient of real time interactive post processing. Here local error indicators serve as criteria where to refine the data representation on the physical domain. In this article we give an overview on different types of error measurement on nested grids and compare them for selected applications in 2D as well as in 3D. Furthermore, it is pointed out that a certain saturation of the considered error indicator plays an important role in multilevel visualization and can be reused for the evaluation of data bounds in hierarchical searching or for a multilevel backface culling of isosurfaces.


Error Indicator Triangular Grid Nest Grid Hanging Node Proceeding Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing in Science and Engineering, 3: 181–191, 1991.MATHGoogle Scholar
  2. 2.
    E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose. Toolglass and magic lenses: the see-through interface. In Proceedings of SIGGRAPH ‘83 (Anaheim, CA, August1–6). In Computer Graphics Proceedings, Annual Conference series, ACM SIGGRAPH, pages 73–80, 1993.Google Scholar
  3. 3.
    A. Certain, J. Popovié, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive multiresolution surface viewing. In SIGGRAPH 96 Conference Proceedings, pages 91–98, 1996.CrossRefGoogle Scholar
  4. 4.
    P. Cignoni, L. De Floriani, C. Montoni, E. Puppo, and R. Scopigno. Multiresolution modeling and visualization of volume data based on simplicial complexes. In 1994 Symposium on Volume Visualization, pages 19–26, 1994.CrossRefGoogle Scholar
  5. 5.
    P. Cignoni, C. Montani, and R. Scopigno. MagicSphere: an insight tool for 3D data visualization. Computer Graphics Forum, 13 (3): 317–328, 1994.CrossRefGoogle Scholar
  6. 6.
    L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. In Proceedings IEEE Visualization 97, October 1997.Google Scholar
  7. 7.
    C. Elliot. The cahn-hilliard model for the kinetics of phase separation. Num. Math., 1988.Google Scholar
  8. 8.
    T. Gerstner. Adaptive hierarchical methods for landscape representation and analysis. In S. Hergarten and H.-J. Neugebauer, editors, Lecture Notes in Earth Sciences78. Springer, 1998.Google Scholar
  9. 9.
    M. H. Gross and R. G. Staadt. Fast multiresolution surface meshing. In Proceedings Visualization, pages 135–142, 1995.Google Scholar
  10. 10.
    R. Grosso, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. In Proceedings Visualization, 1997.Google Scholar
  11. 11.
    B. Hamann and J. Chen. Data point selection for piecewise trilinear approximation. Computer Aided Geometric Design, 11, 1994.Google Scholar
  12. 12.
    H. Hoppe. Progressive meshes. In SIGGRAPH 96 Conference Proc., pages 99–108, 1996.CrossRefGoogle Scholar
  13. 13.
    J. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput., 16: 210–227, 1995.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error control. In Proceedings Visualization, 1996.Google Scholar
  15. 15.
    Y. Livnat, H. W. Shen, and C. R. Johnson. A near optimal isosurface extraction algorithm using the span space. Transaction on Visualization and Computer Graphics, 2 (1): 73–83, 1996.CrossRefGoogle Scholar
  16. 16.
    W. F. Mitchell. A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. on Math. Software, 15 (4): 326–347, 1989.MATHCrossRefGoogle Scholar
  17. 17.
    R. Neubauer, M. Ohlberger, M. Rumpf, and R. Schwörer. Efficient visualization of large scale data on hierarchical meshes. In W. Lefer and M. Grave, editors, Visualization in Scientific Computing ‘87. Springer, 1997.Google Scholar
  18. 18.
    M. Ohlberger and M. Rumpf. Adaptive projection methods in multiresolutional scientific visualization. IEEE Transactions on Visualization and Computer Graphics, Vol 4 (4), 1998.Google Scholar
  19. 19.
    M. C. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Internat. J. Numer. Methods Engrg., 20: 745–756, 1984.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    W. J. Schroeder, J. A. Zarge, and W. A. Lorensen. Decimation of triangle meshes. In Computer Graphics (SIGGRAPH ‘82 Proceedings), volume 26, pages 65–70, 1992.Google Scholar
  21. 21.
    R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-based decimation of marching cubes surfaces. In Proceedings Visualization. IEEE, 1996.Google Scholar
  22. 22.
    U. Weikard. Finite-Element-Methoden für die Cahn-Hilliard-Gleichung unter Einbeziehung elastischer Materialeigneschaften. Diplomarbeit, 1998.Google Scholar
  23. 23.
    J. P. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. In Computer Graphics (San Diego Workshop on Volume Vis.), volume 24, 5, pages 57–62, 1990.Google Scholar
  24. 24.
    Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing volume data. In IEEE Visualization ‘87 Proceedings. IEEE Press, 1997.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Thomas Gerstner
    • 1
  • Martin Rumpf
    • 1
  • Ulrich Weikard
    • 1
  1. 1.Department for Applied MathematicsUniversity of BonnGermany

Personalised recommendations