Advertisement

Procedural Shape Generation for Multi-dimensional Data Visualization

  • David S. Ebert
  • Randall M. Rohrer
  • Christopher D. Shaw
  • Pradyut Panda
  • James M. Kukla
  • D. Aaron Roberts
Part of the Eurographics book series (EUROGRAPH)

Abstract

Visualization of multi-dimensional data is a challenging task. The goal is not the display of multiple data dimensions, but user comprehension of the multi-dimensional data. This paper explores several techniques for perceptually motivated procedural generation of shapes to increase the comprehension of multi-dimensional data. Our glyph-based system allows the visualization of both regular and irregular grids of volumetric data. A glyph’s location, 3D size, color, and opacity encode up to 8 attributes of scalar data per glyph. We have extended the system’s capabilities to explore shape variation as a visualization attribute. We use procedural shape generation techniques because they allow flexibility, data abstraction, and freedom from specification of detailed shapes. We have explored three procedural shape generation techniques: fractal detail generation, superquadrics, and implicit surfaces. These techniques allow from 1 to 14 additional data dimensions to be visualized using glyph shape.

Keywords

Solar Wind Stock Prex Vortex Tube Implicit Surface Information Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 1 (1): 11–23, 1981.CrossRefGoogle Scholar
  2. [2]
    J. Bertin. Semiology of graphics, 1983.Google Scholar
  3. [3]
    William S. Cleveland. The Elements of Graphing Data. Wadsworth Advanced Books and Software, Monterey, Ca., 1985.Google Scholar
  4. [4]
    David Ebert, Chris Shaw, Amen Zwa, and Cindy Starr. Two-handed interactive stereoscopic visualization. Proc. IEEE Visualization ‘86, Oct. 1996.Google Scholar
  5. [5]
    David S. Ebert. Advanced geometric modeling. The Computer Science and Engineering Handbook, Allen Tucker Jr., ed., chap. 56. CRC Press, 1997.Google Scholar
  6. [6]
    David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. Texturing and Modeling: A Procedural Approach, Second Edition. AP Professional, 1998.Google Scholar
  7. [7]
    J. D. Foley and C. F. McMath. Dynamic process visualization. IEEE Computer Graphics and Applications, 6 (3): 16–25, March 1986.CrossRefGoogle Scholar
  8. [8]
    Andrew Parker, Chris Cristou, Bruce Cumming, Elizabeth Johnson, Michael Hawken, and Andrew Zisserman. The Analysis of 3D Shape: Psychological principles and neural mechanisms. In Glyn Humphreys, editor, Understanding Vision, chapter 8. Blackwell, 1992.Google Scholar
  9. [9]
    Claudia E. Pearce and Charles Nicholas. TELLTALE: Experiments in a Dynamic Hypertext Environment for Degraded and Multilingual Data. Journal of the American Society for Information Science (JASIS), 47, April 1996.Google Scholar
  10. [10]
    Frank J. Post, Theo van Walsum, Frits H. Post, and Deborah Silver. Iconic techniques for feature visualization. In Proceedings Visualization ‘85, pages 288–295, October 1995.Google Scholar
  11. [11]
    W. Ribarsky, E. Ayers, J. Eble, and S. Mukherja. Glyphmaker: creating customized visualizations of complex data. IEEE Computer,27(7):57–64.Google Scholar
  12. [12]
    Randall M. Rohrer, David S. Ebert, and John L. Sibert. The Shape of Shakespeare: Visualizing Text using Implict Surfaces. In Proceedings Information Visualization 1998, pages 121–129. IEEE Press, 1998.Google Scholar
  13. [13]
    H. Senay and E. Ignatius. A knowledge-based system for visualization design. IEEE Computer Graphics and Applications, 14 (6): 36–47, November 1994.CrossRefGoogle Scholar
  14. [14]
    H. Senay and E. Ignatius. Rules and principles of scientific data visualization. ACM SIGGRAPH Hyper Vis Project, 1996.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • David S. Ebert
    • 1
  • Randall M. Rohrer
    • 2
  • Christopher D. Shaw
    • 3
  • Pradyut Panda
    • 1
  • James M. Kukla
    • 1
  • D. Aaron Roberts
    • 4
  1. 1.CSEE DepartmentUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Department of EECSThe George Washington UniversityUSA
  3. 3.Department of Computer ScienceUniversity of ReginaReginaCanada
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations