Skip to main content

Part of the book series: Few-Body Systems ((FEWBODY,volume 11))

Abstract

Current issues associated with nucleon axial matrix elements are studied, including the Goldberger-Treiman discrepancy, the induced pseudoscalar, and SU(3) chiral perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent slant and for further references see V. Agrawal, S.M. Barr, J.F. Donoghue, D. Seckel: Phys Rev. D57, 5480 (1998)

    ADS  Google Scholar 

  2. A.N. Sosnovskii et al.: Sov. Phys. JETP 8, 739 (1959)

    Google Scholar 

  3. S.A. Adler: Phys. Rev. Lett. 14, 1051 (1965)

    Article  ADS  MATH  Google Scholar 

  4. C.J. Christensen et al.: Phys. Lett. B26, 11 (1967)

    ADS  Google Scholar 

  5. C.J. Christensen et al.:Phys. Rev. D5, 1628 (1972)

    ADS  Google Scholar 

  6. R.J. Blin-Stoyle, Fundamental Interactions and the Nucleus, North-Holland, New York (1969)

    Google Scholar 

  7. K. Schreckenbach et al.: Phys. Lett. B259, 353 (1991)

    Google Scholar 

  8. R. Dashen and M. Weinstein, Phys. Rev. 188, 2330 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  9. C.A. Dominguez: Riv. del Nuovo Cimento 8, 1 (1985)

    Article  Google Scholar 

  10. N.H. Fuchs, H. Sazdjian, and J. Stem, Phys. Lett. B238, 380 (1990)

    ADS  Google Scholar 

  11. B.R. Holstein, Phys. Lett. B244, 83 (1990)

    ADS  Google Scholar 

  12. Particle Data Group, Phys Rev. D50, 1173 (1996)

    Google Scholar 

  13. H. Haberzettl et al.: Phys Rev. D58, 40 (1998)

    ADS  Google Scholar 

  14. R. Koch and E. Pieterinin: Nucl. Phys. A336, 331 (1980)

    ADS  Google Scholar 

  15. R. Arndt et al.: Phys. Rev. Lett. 65, 157 (1990)

    Article  ADS  Google Scholar 

  16. M.L. Goldberger and S.B. Treiman: Phys. Rev. 110, 1478 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  17. J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York (1964)

    Google Scholar 

  18. G. Bardin et al.: Phys. Lett. B104, 320 (1981)

    ADS  Google Scholar 

  19. P. Ackerbauer et al.: Phys. Lett. B417, 224 (1998)

    ADS  Google Scholar 

  20. V. Roesch et al.: Phys. Rev. Lett. 46, 1507 (1981)

    Article  ADS  Google Scholar 

  21. G. Jonkmans et al.: Phys. Rev. Lett. 77, 4512 (1996)

    Article  ADS  Google Scholar 

  22. H.W. Fearing: Phys. Rev. C21, 1951 (1980);

    ADS  Google Scholar 

  23. D.S. Beder and H.W. Fearing: Phys. Rev. D39, 3493 (1989)

    ADS  Google Scholar 

  24. A.I Vainshtein and V.I. Zakharov: Nucl. Phys. B36 (1972)

    Google Scholar 

  25. V. Bernard, N. Kaiser, and U.-G. Meissner: Nucl. Phys, A607, 379 (1996)

    ADS  Google Scholar 

  26. S. Choi et al.: Phys. Rev. Lett. 71, 3927 (1993)

    Article  ADS  Google Scholar 

  27. See, e.g. B.R. Holstein: Phys. Rev. C3, 1964 (1972)

    Google Scholar 

  28. W.J. Cummings et al.: Proc. WEIN’95, ed. H. Ejiri, T. Kishimoto, and T. Sato, World Scientific, Singapore (1995), p. 381; G. Cates: private communication

    Google Scholar 

  29. J.F. Donoghue, B.R. Holstein, and S.W. Klimt: Phys. Rev. D35, 934 (1987)

    ADS  Google Scholar 

  30. J. Bijnens, H. Sonoda, and M.B. Wise: Nucl. Phys. B261, 185 (1985)

    Article  ADS  Google Scholar 

  31. J.F. Donoghue, B.R. Holstein, and B. Borasoy: hep-ph/9804281

    Google Scholar 

  32. J.F. Donoghue and B.R. Holstein: hep-ph/9803312

    Google Scholar 

  33. M.A. Luty and M. White: Berkeley prepring LBL33993 (1993)

    Google Scholar 

  34. See, it e.g. T. Yamaguchi et al.: Nucl. Phys. A500, 129 (1989)

    Google Scholar 

  35. K. Kubodera et al.: Nucl. Phys. A439, 695 (1985)

    ADS  Google Scholar 

  36. S. Theberge et al.: Phys. Rev. D22, 2838 (1980)

    ADS  Google Scholar 

  37. A.W. Thomas, J. Phys. G7, L283 (1981)

    ADS  Google Scholar 

  38. R.E. Stuckey and M.C. Birse, J. Phys. G23, 29 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Holstein, B.R. (1999). Nucleon Axial Matrix Elements. In: Simula, S., Saghai, B., Mukhopadhyay, N.C., Burkert, V.D. (eds) N* Physics and Nonperturbative Quantum Chromodynamics. Few-Body Systems, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6800-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6800-4_20

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7410-4

  • Online ISBN: 978-3-7091-6800-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics