Correlated Hyperspherical Harmonic Methods and Applications

  • A. Kievsky
Part of the Few-Body Systems book series (FEWBODY, volume 10)


The Correlated Hyperspherical Harmonic Method is used to describe bound and scattering states in few-body systems. Special attention is given to the three-nucleon problem in which the presence of correlation factors substantially accelerate the convergence of the expansion. For scattering states the complex form of the Kohn variational principle is used to determine the S- or T-matrix. Using this formalism the method can be extended to energies above the three-body breakup threshold. Using realistic NN interactions comparisons to experimental data are given.


Differential Cross Section Tensor Analyze Power Deuteron Breakup Deuteron Analyze Power Hyperspherical Harmonic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Kievsky, M. Viviani, S. Rosati: Nucl. Phys. A551, 241 (1993)ADSGoogle Scholar
  2. 2.
    M. Viviani, A. Kievsky, S. Rosati: Few Body Syst. 18, 25 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    A. Kievsky, M. Viviani, S. Rosati: Nucl. Phys. A577, 511 (1994)ADSGoogle Scholar
  4. 4.
    M. Viviani, S. Rosati, A. Kievsky: Phys. Rev. Lett, (in print)Google Scholar
  5. 5.
    A. Kievsky: Nucl. Phys. A624, 125 (1997)ADSGoogle Scholar
  6. 6.
    R.A. Aziz, M.J. Slaman: J. Chem. Phys. 94, 8047 (1991)ADSCrossRefGoogle Scholar
  7. K.T. Tang, J.P. Toennies, C.L. Yiu: Phys. Rev. Lett. 74, 1546 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    M. Viviani: Contribution to this ConferenceGoogle Scholar
  9. 9.
    H. Kameyama, M. Kamimura, Y. Fukushima: Phys. Rev. C40, 974 (1989)ADSGoogle Scholar
  10. 10.
    A. Nogga et al.: Phys. Lett. B409, 19 (1997)ADSGoogle Scholar
  11. 1.
    E. Nielsen, D.V. Fedorov, A.S. Jenses: Preprint physics/9806020Google Scholar
  12. 12.
    A. Kievsky, M. Viviani, S. Rosati: Phys. Rev. C56, 2987 (1997)ADSGoogle Scholar
  13. 13.
    R.R. Lucchese: Phys. Rev. A40, 6879 (1989)ADSGoogle Scholar
  14. 14.
    A. Kievsky et al.: Nucl. Phys. A607, 402 (1997)ADSGoogle Scholar
  15. 15.
    P. Merkuriev: Ann. Phys. (N.Y.) 130, 395 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    A. Kievsky et al.: Phys. Lett. B406, 292 (1997)ADSGoogle Scholar
  17. 17.
    C.R. Brune et al.: Phys. Lett. B428, 13 (1998)ADSGoogle Scholar
  18. 18.
    S. Shimizu et al.: Phys. Rev. C52, 1193 (1995)Google Scholar
  19. 19.
    J. Sowinski et al.: Nucl. Phys. A464, 223 (1987)Google Scholar
  20. 20.
    F. Sperisen et al.: Nucl. Phys. A422, 81 (1984)ADSGoogle Scholar
  21. 21.
    C.R. Brune: Private CommunicationGoogle Scholar
  22. 22.
    W. Schöllkopf, J.P. Toennies: J. Chem. Phys. 104, 1155 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • A. Kievsky
    • 1
  1. 1.Istituto Nazionale di Fisica NuclearePisaItaly

Personalised recommendations