Few-Electron Artificial Atoms

  • J. Adamowski
  • B. Szafran
  • S. Bednarek
  • B. Stébé
Part of the Few-Body Systems book series (FEWBODY, volume 10)


Artificial atoms, ie., bound systems of excess electrons confined in semiconductor quantum dots, are studied by the vanaUonal and Hartree Fock methods. The confinement potential is assumed to have the form of a spherS potential well of finite depth, which provides a theoretical model for eÍctron’ states in a spherical semiconductor nanocrystal embedded in an insulating matrix. For the two- and three-electron artificial atoms, we have applied the variational method and obtained the binding of both the ground states and excited states. The Hartee-Fock method has been applied to the N-electron artificial atoms with N = 1, …, 20. It is shown that the shells of the artificial atoms are filled bt electrons in the same manner like those of the natural atoms. In particular, Hund’s rule is fulfilled. The radial probability density calculated for artificial atoms is different from that for natural atoms.


Excess Electron Trial Wave Function Confinement Potential Linear Variational Parameter Natural Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For review articles, see: U. Merkt: Phys, BÍ. 47, 509 (1991)Google Scholar
  2. M.A. Kästner: Phys Today 46, 24 (1993)CrossRefGoogle Scholar
  3. A.D. Yoffe: Adv. Phys. 42, 173 (1993)ADSCrossRefGoogle Scholar
  4. N. F. Johnson: J Phys. Condens. Matter 7, 965 (1995)ADSCrossRefGoogle Scholar
  5. M. A. Kastner: Comments Cond. Mat. Phys. 17, 349 (1996)Google Scholar
  6. M.A. Reed et al.: J. Vac. Sci. Technol. B4, 358 (1986)ADSGoogle Scholar
  7. 3.
    Q. Ye, R. Tsu. and E.H. Nicollian: Phys. Rev. B44, 1806 (1991)Google Scholar
  8. 4.
    A.P. Alivisatos: J. Phys. Chem. 100, 13226 (1996)CrossRefGoogle Scholar
  9. 5.
    Ch. Sikorski and U. Merkt: Phys. Rev. Lett. 62, 2164 (1989)ADSCrossRefGoogle Scholar
  10. 6.
    R.C. Ashoori et al.: Phys. Rev. Lett. 68, 3088 (1992)ADSCrossRefGoogle Scholar
  11. 7.
    U. Meirav et al.: Z. Phys. B85, 357 (1991)ADSCrossRefGoogle Scholar
  12. J. Weis et al: Phys. Rev. Lett. 71, 4019 (1993)Google Scholar
  13. 8.
    S. Tarucha et al.: Phys. Rev. Lett. 77, 3613 (1996)ADSCrossRefGoogle Scholar
  14. 9.
    B. Szafran, S. Bednarek an J. Adamowski: Proc. XXVII Int. School on physics of Semiconducting Compounds, jaszowiec, Poland, June 7-12, 1998 — in print.Google Scholar
  15. 10.
    G.W. Bryant: Phys. Rev. lett. 59, 1140 (1987)CrossRefGoogle Scholar
  16. D. Babić, R. Tsu and R.F. Greene: Phys. Rev. B45, 14150 (1992)ADSGoogle Scholar
  17. M. Iwamatsu et al.: J. Phys. Condens. Matter 9, 9881 (1997)ADSCrossRefGoogle Scholar
  18. 11.
    U. Merkt, J. Huser, and M. Wagner: Phys. Rev. B43, 7320 (1991)ADSGoogle Scholar
  19. D. Pfannkuche, V. Gudmungsson and P.A. Maksym: Phys. Rev. 47, 2244 (1993)ADSCrossRefGoogle Scholar
  20. P. Hawrylak: Phys. Rev. Lett. 71, 3347 (1993)ADSCrossRefGoogle Scholar
  21. A. Matulis and F.M. Peeters: J. Phys.: Condens. Matter 6, 7751 (1994)ADSCrossRefGoogle Scholar
  22. F.M. Peeters and V.A. Schweigert: Phys. Rev. B53, 1468 (1996)ADSGoogle Scholar
  23. M. Fujito, A. Natori and H. Yasunaga: Phys. Rev. B53, 9952 (1996)ADSGoogle Scholar
  24. L. Jacak, J. Krasnyj and A. Wójs: Physica B229, 279 (1997)ADSGoogle Scholar
  25. 12.
    B. Szafran, J. Adamowski and B. Stébé: J. phys.: Condens. Matter (1998) — in printGoogle Scholar
  26. 13.
    L. Bányai and S.W. Kochj: In: Semiconductor Quantumn Dots. Singapore: World Scientific 1993Google Scholar
  27. 14.
    C. Joslin and S. Goldman: J. Phys. B: At. Mol. Opt. Phys. 25, 1965 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • J. Adamowski
    • 1
  • B. Szafran
    • 1
  • S. Bednarek
    • 1
  • B. Stébé
    • 2
  1. 1.Faculty of Physics & Nuclear TechniquesTechnical University (AGH)KrakówPoland
  2. 2.Institut de Physique et d’ElectroniqueUniversité de MetzMetzFrance

Personalised recommendations