Null-Plane Invariance of Hamiltonian Null-Plane Dynamics

  • F. Coester
  • W. H. Klink
  • W. N. Polyzou
Part of the Few-Body Systems book series (FEWBODY, volume 10)


Relativistic Hamiltonian few-body dynamics [1, 2] involves two unitary representations of the Poincaré group on the Hilbert space H of physical states, with and without interactions. These two representations, U(Λ, a) and U 0(Λ, a), coincide for a kinematic subgroup H. The “Hamiltonians” are the generators not in the Lie algebra of the kinematic subgroup. The kinematic subgroup of null-plane dynamics leaves the null-plane z·x≡x 0 + x 3 = 0 invariant.


Unitary Representation Lorentz Transformation Coset Representative Poincare Group Null Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac: Reviews of Modern Physics 21, 392 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    B.D. Keister and W. N. Polyzou: Adv. in Nucl. Phys. 20, 225 (1991)Google Scholar
  3. 3.
    F. Coester and W.N. Polyzou: Phys. Rev. D26, 1348 (1982)MathSciNetADSGoogle Scholar
  4. 4.
    J. Schwinger: Phys. Rev. 127, 324 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    V.A. Karmanov: ZhETF 71, 399 (1976) [transl.: JETP 44, 210 (1976)]Google Scholar
  6. 6.
    J. Carbonell et al.: Phys. Rep. 300, 215 (1998)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M. Fuda: Ann. Phys. 197, 265 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    F. Coester: Prog. Part. Nuc. Phys. 29, 1 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • F. Coester
    • 1
  • W. H. Klink
    • 2
  • W. N. Polyzou
    • 2
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of PhysicsUniversity of IowaIowa CityUSA

Personalised recommendations